Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:11
  • preuzimanja u poslednjih 30 dana:7
članak: 5 od 169  
Back povratak na rezultate
Journal on Processing and Energy in Agriculture
2019, vol. 23, br. 3, str. 124-127
jezik rada: engleski
vrsta rada: izvorni naučni članak
objavljeno: 03/01/2020
doi: 10.5937/JPEA1903124B
Temperaturni model fotonaponskog modula
University of Agriculture in Nitra, Faculty of Engineering, Department of Physics, Slovak Nitra, Slovak Republic

e-adresa: bilcikmatus@gmail.com

Projekat

This paper was supported by the project KEGA 017-SPU 4/2017: Multimedia textbook of physics for engineers, Ministry of Education, Science, Research, and Sport of the Slovakia
This paper was co-funded by the European Community within the project no 26220220180: Building Research Centre "AgroBioTech"

Sažetak

Primarni cilj ovog rada je kreiranje termalng modela fotonaponskog modula koji je upotrebljiv u pravim klimatskim uslovima u regionu Centralne Evrope. Sistem za merenje temperature fotonaponskog modula je projektovan i napravljen na Departmanu za fiziku, Slovačkog poljoprivrednog univerziteta u Nitri, Slovačka. Klimatski podaci prikazani u radu su izmereni stanicom za prognozu i praćenje vremenskih uslova. Merenja su obavljena tokom leta sa PV modulom. Dobijeni rezultati pokazuju da je odziv temperature modula dinamičan sa promenama zračenja i temperature modula, posebno u periodima fluktuirajućeg zračenja. Na osnovu dobijenih eksperimentalnih rezultata napravljeni su matematički modeli dobijenih odnosa temperaturnog zračenja i vremena. Polinomna funkcija drugog stepena je definisana za svaki grafički odnos, sa relativno visokim koeficijentima determinacije. Temperaturni model PV modula nastao je nakon prilagođavanja eksperimentalnih rezultata sa stvarnim zavisnostima i vrednostima korelacione analize.

Ključne reči

spoljni uticaj; relacija; solarni sistem; energija

Reference

Armstrong, S., Hurley, W.G. (2010) A thermal model for photovoltaic panels under varying atmospheric conditions. Applied Thermal Engineering, 30(11-12): 1488-1495
Bilčík, M., Božiková, M. (2018) Wind speed and the selected time temperature dependencies for photovoltaic module. u: Physics: Applications and Inovations, SUA in Nitra
Chander, S., Purohit, A., Sharma, A., Arvind,, Nehra, S.P., Dhaka, M.S. (2015) A study on photovoltaic parameters of mono-crystalline silicon solar cell with cell temperature. Energy Reports, 1:104-109
Čorba, Z., Katić, V., Milićević, D. (2009) Photovoltaic systems in agriculture. Časopis za procesnu tehniku i energetiku u poljoprivredi, vol. 13, br. 4, str. 328-331
Duffie, J.A., Beckman, W.A. (2013) Solar engineering of thermal processes. New York: John Wiley & Sons
Jones, A.D., Underwood, C.P. (2001) A thermal model for photovoltaic systems. Solar Energy, 70(4): 349-359
Libra, M., Poulek, V., Kouřím, P. (2017) Temperature changes of I-V characteristics on photovoltaic cells as consequence of the Fermi energy level shift. Research in Agricultural Engineering, vol. 63, no. 1, pp. 10-15
Malínek, M., Bilčík, M., Božiková, M., Petrović, A., Kotoulek, P., Hlaváč, P. (2018) The selected time temperature and wind speed dependencies for photovoltaic module. Journal on Processing and Energy in Agriculture, 22 (2), 2018, 82-84
Milićević, D., Popadić, B., Dumnić, B., Čorba, Z., Katić, V. (2012) Possibility of solar potential utilization in Republic of Serbia: Practical example. Journal on Processing and Energy in Agriculture, vol. 16, br. 3, str. 109-112
Schott, T. (1985) Operation temperatures of PV modules. u: The sixth E.C. photovoltaic solar energy conference, London, UK, April 15-19, Proceedings of, p.392-6
Servant, J.M. (1985) Calculation of the cell temperature for photovoltaic modules from climatic data. u: Bilgen E, Hollands KGT [ur.] The 9th biennial Congress of ISES - Intersol 85, Montreal, Canada, extended abstracts, Proceedings of, p. 370