Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:37
  • preuzimanja u poslednjih 30 dana:28
članak: 6 od 205  
Back povratak na rezultate
Acta medica Medianae
2019, vol. 58, br. 3, str. 128-137
jezik rada: engleski
vrsta rada: pregledni članak
objavljeno: 16/11/2019
doi: 10.5633/amm.2019.0319
Creative Commons License 4.0
Primena veštačke inteligencije u medicini i farmaciji - etički aspekti
aUniverzitet u Nišu, Medicinski fakultet + Zavod za sudsku medicinu Niš, Niš
bUniverzitet u Nišu, Medicinski fakultet
cUniverzitet u Nišu, Medicinski fakultet + Klinički centar Niš, Klinika za neurologiju

e-adresa: emilija293@gmail.com

Sažetak

Poslednjih 30 godina zabeležen je razvoj veštačke inteligencije, čije se dobrobiti mogu primeniti u skoro svim oblastima nauke i života. Od sredine prošlog veka, istraživači su otkrili potencijalne primene (tehnika veštačke inteligencije) u svakom polju medicine. Važnost veštačke inteligencije ogleda se u mogućnosti pravilnog odlučivanja, bez subjektivnosti, bez umora, sa neograničenim mogućnostima upoređivanja, pamćenja i zaključivanja. Ovo je veoma važno u medicini, za prevenciju i dijagnostiku različitih oboljenja, kao i za praćenje efekata terapije. Brojne studije pokazale su da će uskoro veštačka inteligencija zameniti medicinske radnike u brojnim aktivnostima, jer su rezultati dobijeni primenom veštačke inteligencije bolji i precizniji. Razvijene su brojne aplikacije koje bolesnicima pojednostavljuju pridržavanje terapije, čime se poboljšava adherenca i u konačnome efekat terapije. Primena veštačke inteligencije zastupljena je i u farmaceutskoj industriji, u dizajnu novih lekova. Ovim se skraćuju pretklinička ispitivanja, koja su izuzetno duga i skupa. Veštačka inteligencija donosi zaključke na osnovu podataka koji su joj dati, pa se mora voditi računa o validnosti tih podataka, jer se na osnovu njih razvijaju izuzetno bitni algoritmi. Važan je aspekt zaštita podataka o bolesnicima, jer je mogućnost objavljivanja tih podataka veliki etički problem. Zbog računara i veštačke inteligencije već mnogo ljudi gubi posao širom sveta, a postoji tendencija nastavka ovakvog trenda. Pitanje je da li je potrebno da mašine zamene ljude u oblasti kao što je medicina, gde su osećanja, empatija i toplina vrlo važni faktori.

Ključne reči

Reference

*** Innovate UK grant helps fund research into depression treatment. https://www.med-technews.com/news/innovate-uk-grant-helps-fund-research-into-depression-treatm/, cited 2019 Feb 11
Agency for Healthcare Research and Quality (AHRQ) Improving adherence and outcomes by artificial intelligence-adapted text messages (AIM@BP). https://clinicaltrials.gov/ct2/show/NCT02454660, cited 2018 Feb 10
Babaian, R. J., Fritsche, H.A., Zhang, Z., Zhang, K. H., Madyastha, K. R., Barnhill, S.D. (1998) Evaluation of ProstAsure index in the detection of prostate cancer: A preliminary report. Urology, 51(1): 132-136
Baxt, W.G. (1990) Use of an artificial neural network for data analysis in clinical decision-making: The diagnosis of acute coronary occlusion. Neural Computation, 2(4): 480-489
Baxt, W.G., Skora, J. (1996) Prospective validation of artificial neural network trained to identify acute myocardial infarction. Lancet, 347(8993): 12-15
Beck, A.H., Gargeya, R., Irshad, H., Khosla, A., Wang, D. (2016) Deep learning for identifying metastatic breast cancer. arXiv preprint, 1606.05718
Bounds, D.G., Lloyd, P.J., Mathew, B.G. (1990) A comparison of neural network and other pattern recognition approaches to the diagnosis of low back disorders. Neural Networks, 3(5): 583-591
Burke, H.B., Hoang, A., Iglehart, J.D., Marks, J.R. (1998) Predicting response to adjuvant and radiation therapy in patients with early stage breast carcinoma. Cancer, 82(5): 874-7
Burke, H.B., Goodman, P.H., Rosen, D.B., Henson, D.E., Weinstein, J.N., Harrell, F.E. J., Marks, J.R., Winchester, D.P., Bostwick, D.G. (1997) Artificial neural networks improve the accuracy of cancer survival prediction. Cancer, 79(4): 857-862
Chan, H., Sahiner, B., Lam, K.L., Petrick, N., Helvie, M.A., Goodsitt, M.M., Adler, D.D. (1998) Computerized analysis of mammographic microcalcifications in morphological and texture feature spaces. Medical Physics, 25(10): 2007-2019
Danziger, S., Levav, J., Avnaim-Pesso, L. (2011) Extraneous factors in judicial decisions. Proceedings of the National Academy of Sciences USA, 108(17): 6889-6892
Dar, R. (2018) Effect of real-time monitoring and notification of smoking episodes on smoking reduction: A pilot study of a novel smoking cessation app. Nicotine & Tobacco Research, 20(12): 1515-1518
Dybowski, R., Gant, V., Weller, P., Chang, R. (1996) Prediction of outcome in critically ill patients using artificial neural network synthesised by genetic algorithm. Lancet, 347(9009): 1146-1150
Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, M. S., Blau, H.M., Thrun, S. (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639): 115-118
Fagella, D. 7 application of machine learning in pharma and medicine. https://www.techemergence.com/machine-learning-in-pharma-medicine/, cited 2019 Feb 10
Furtkamp, J. Could AI help us predict the next epidemic?. https://reliefweb.int/report/world/could-artificial-intelligence-help-us-predict-next-epidemic, cited 2018 Feb 15
Gailliot, M.T., Baumeister, R.F., Dewall, C. N., Maner, J.K., Plant, E. A., Tice, D.M., Brewer, L.E., Schmeichel, B.J. (2007) Self-control relies on glucose as a limited energy source: Willpower is more than a metaphor. Journal of Personality and Social Psychology, 92(2): 325-336
García, D., Paluri, M., Wu, S. Under the hood: Building accessibility tools for visually impaired on Facebook. https://code.facebook.com/posts/457605107772545/under-the-hood-building-accessibility-tools-for-the-visually-impaired-on-facebook/, cited 2018 Feb 11
Gilbert, D.T. (1991) How mental systems believe. American Psychologist, 46(2): 107-119
Golub, R., Cantu, R.J., Tan, M. (1998) The prediction of common bile duct stones using a neural network. Journal of the American College of Surgeons, 187(6): 584-590
Gunn, A.A. (1976) The diagnosis of acute abdominal pain with computer analysis. J R Coll Surg Edinb, 21(3): 170-172
Handels, H., Roß, T.H., Kreusch, J., Wolff, H.H., Pöppl, S.J. (1999) Feature selection for optimized skin tumor recognition using genetic algorithms. Artificial Intelligence in Medicine, 16(3): 283-297
He, K., Zhang, X., Ren, S., Sun, J. (2016) Deep residual learning for image recognition. u: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun 27-30, Proceedings, Las Vegas, USA: Institute of Electrical and Electronics Engineers (IEEE), str. 770-778
Henson, D.B., Spenceley, S.E., Bull, D.R. (1997) Artificial neural network analysis of noisy visual field data in glaucoma. Artificial Intelligence in Medicine, 10(2): 99-113
HIV Global statistics. https://www.hiv.gov/hiv-basics/overview/data-and-trends/global-statistics, cited 2019 Feb 12
Ibrić, S., Knežević, M., Parojčić, J., Đurić, Z. (2007) Primena veštačkih neuronskih mreža u formulaciji farmaceutskih preparata. Arhiv za farmaciju, vol. 57, br. 6, str. 399-414
Jefferson, M.F., Pendleton, N., Lucas, S.B., Horan, M.A. (1997) Comparison of a genetic algorithm neural network with logistic regression for predicting outcome after surgery for patients with nonsmall cell lung carcinoma. Cancer, 79(7): 1338-1342
Khamis, M.A., Gomaa, W., Ahmed, W.F. (2015) Machine learning in computational docking. Artificial Intelligence in Medicine, 63(3): 135-152
Krizhevsky, A., Sutskever, I., Hinton, G.E. (2017) ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6): 84-90
Kugelman, J.R., Sanchez-Lockhart, M., Andersen, K.G., Gire, S., Park, D.J., Sealfon, R., Lin, A.E., Wohl, S., Sabeti, P.C., Kuhn, J.H., Palacios, G.F. (2015) Evaluation of the potential impact of Ebola virus genomic drift on the efficacy of sequence-based candidate therapeutics. mBio, 6(1): 2227-2241
Lusted, L.B. (1955) Medical electronics. New England Journal of Medicine, 252(14): 580-585
Macrae, C. N., Bodenhausen, G.V. (2000) Social cognition: Thinking categorically about others. Annual Review of Psychology, 51(1): 93-120
Mamoshina, P., Kochetov, K., Putin, E., Cortese, F., Aliper, A.F., Lee, W., Ahn, S., Uhn, L., Skjodt, N., Kovalchuk, O., Scheibye-Knudsen, M., Zhavoronkov, A. (2018) Population specific biomarkers of human aging: A big data study using South Korean, Canadian, and Eastern European patient populations. Journals of Gerontology: Series A Biol Sci Med Sci, 73(11): 1482-1490
Mason, D.G., Ross, J.J., Edwards, N.D., Linkens, D.A., Reilly, C.S. (1997) Self-learning fuzzy control of atracurium-induced neuromuscular block during surgery. Medical & Biological Engineering & Computing, 35(5): 498-503
Mason, R. (1986) Four ethical issues of the information age. Management Information Systems Quarterly, 10(1): 5-12
Miladinović, M., Mihailović, B., Mladenović, D., Duka, M., Živković, D., Mladenović, S., Šubarić, L. (2017) Artificial intelligence in clinical medicine and dentistry. Vojnosanitetski pregled, vol. 74, br. 3, str. 267-272
National Cancer Institute Cancer statistics. https://www.cancer.gov/about-cancer/understanding/statistics, cited 2019 Feb 15
Nikolov, S., Blackwell, S., Mendes, R., de Fauw, J., Meyer, C., Hughes, C., et al. (2018) Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. ArXiv preprint, 1809.04430v1
Pesonen, E., Ohmann, C., Eskelinen, M., Juhola, M. (1998) Diagnosis of acute appendicitis in two databases: Evaluation of different neighborhoods with an LVQ neural network. Methods Inf Med, 37(1): 59-63
Ramesh, A.N., Kambhampati, C., Monson, J.R.T., Drew, P.J. (2004) Artificial intelligence in medicine. Annals of The Royal College of Surgeons of England, 86(5): 334-338
Reece, A.G., Danforth, C.M. (2017) Instagram photos reveal predictive markers of depression. EPJ Data Science, 6:15
Salvatore, C., Cerasa, A., Battista, P., Gilardi, M.C., Quattrone, A., Castiglioni, I. (2015) Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: A machine learning approach. Frontiers in Neuroscience, 9: 307-307
Schneider, J., Bitterlich, N., Velcovsky, H.-G., Morr, H., Katz, N., Eigenbrodt, E. (2002) Fuzzy logic-based tumor-marker profiles improved sensitivity in the diagnosis of lung cancer. International Journal of Clinical Oncology, 7(3): 145-151
Sourla, E., Sioutas, S., Syrimpeis, V., Tsakalidis, A., Tzimas, G. (2012) CardioSmart365: Artificial intelligence in the service of cardiologic patients. Advances in Artificial Intelligence, 2012: 1-12, 585072
Stamey, T.A., Barnhill, S.D., Thang, Z., et al. (1996) Effectiveness of ProstAsureTM in detecting prostate cancer (PCa) and benign prostatic hyperplasia (BPH) in men age 50 and older. J Urol, 155, 436A
Stocker, J. Artificial intelligence is coming to medicine: Don't be afraid. https://www.statnews.com/2017/08/18/artificial-intelligence-medicine/, cited 2018 Feb 20
Szegedy, C., Wei, L., Yangqing, J., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A. (2015) Going deeper with convolutions. u: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, Proceedings, Boston, USA: Institute of Electrical and Electronics Engineers (IEEE, str. 1-9
Takahashi, H., Tampo, H., Arai, Y., Inoue, Y., Kawashima, H. (2017) Applying artificial intelligence to disease staging: Deep learning for improved staging of diabetic retinopathy. PLoS One, 12(6): e0179790-e0179790
Velthuizen, R.P., Hall, L.O., Clarke, L.P. (1999) Feature extraction for MRI segmentation. Journal of Neuroimaging, 9(2): 85-90
Vincent, J. Google is absorbing DeepMind's health care unit to create an 'AI assistant for nurses and doctors'. https://www.theverge.com/2018/11/13/18091774/google-deepmind-health-absorbing-streams-team-ai-assistant-nurse-doctor, cited 2019 Feb 20
World Health Organization Diabetes. http://www.who.int/mediacentre/factsheets/fs312/en/, cited 2019 Feb 15
Ying, H., McEachern, M., Eddleman, D.W., Sheppard, L.C. (1992) Fuzzy control of mean arterial pressure in postsurgical patients with sodium nitroprusside infusion. IEEE Transactions on Biomedical Engineering, 39(10): 1060-1070
Zadeh, L.A. (1969) Biological application of the theory of fuzzy sets and systems. u: Proceedings of the International Symposium on Biocybernetics of the Central Nervous System, Boston: Little Brown, 199-212
Zauderer, M.G., Gucalp, A., Epstein, A.S., Seidman, A.D., Caroline, A., Granovsky, S., Fu, J., Keesing, J., Lewis, S., Co, H., Petri, J., Megerian, M., Eggebraaten, T., Bach, P., Kris, M.G. (2014) Piloting IBM Watson Oncology within Memorial Sloan Kettering's regional network. Journal of Clinical Oncology, 32(15_suppl): e17653-e17653