Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:18
  • preuzimanja u poslednjih 30 dana:12
članak: 4 od 73  
Back povratak na rezultate
Srpski arhiv za celokupno lekarstvo
2019, vol. 147, br. 1-2, str. 29-35
jezik rada: engleski
vrsta rada: originalan članak
objavljeno: 07/03/2019
doi: 10.2298/SARH180504064P
Performanse kalkulatora za dijagnostiku uzroka oštećenja jetre
aUniverzitet u Kragujevcu, Medicinski fakultet, Katedra za farmakologiju i toksikologiju
bVojnomedicinska akademija, Klinika za infektivne i tropske bolesti, Beograd

e-adresa: petrovicnarcisa3@gmail.com

Projekat

Farmakološka analiza efekata biološki aktivnih supstanci na izolovane glatke mišiće gastrointestinalnog i urogenitalnog trakta čoveka (MPNTR - 175007)

Sažetak

Uvod/Cilj Izrada kalulatora koji bi prepoznao obrasce abnormalnih testova funkcije jetre i povezao ih sa najverovatnijom etiologijom mogla bi da pomogne kliničarima kod prve orijentacije ka definitivnoj dijagnozi kod bolesnika sa oštećenjem jetre. Cilj naše studije bio je da dizajniramo, konstruišemo i validiramo kalkulator koji na osnovu obrasca abnormalnih testova funkcije jetre kod bolesnika sa oštećenjem jetre predlaže najverovatniju etiologiju. Metode Obrazac abnormalnih testova funkcije jetre za određenu etiologiju oštećenja jetre preuzet je iz distribucije stvarnih vrednosti koje su preuzete iz medicinske literature o bolesnicima čija je etiologija oštećenja jetre dokazana pouzdanim dijagnostičkim metodama. Posle postavljanja kalkulatora, njegova dijagnostička vrednost je proverena u stvarnim uslovima, na uzorku bolesnika sa oštećenjem jetre čija je etiologija ustanovljena zlatnim standardom dijagnostike (biopsija ili drugo). Studija validacije kalkulatora obavljena je na Vojnomedicinskoj akademiji u Beogradu tokom dvogodišnjeg perioda (2015-2016). Rezultati Za sve testirane dijagnoze, kalkulator je pokazao veoma značajnu razliku između površine ispod ROC (Receiver operating characteristic) kriva i vrednosti od 0,5 (p < 0,001), a uočen je i visok stepen senzitivnosti (više od 90%, osim kalkulatora za hronični hepatitis), kao i relativno visoka specifičnost (više od 75%), što ukazuje na dobru sposobnost kalkulatora da otkrije etiologiju oštećenja jetre. Zaključak Novi kalkulatori pokazali su zadovoljavajuću osetljivost i specifičnost za otkrivanje glavnih etiologija oštećenja jetre.

Ključne reči

medicinski kalkulator; senzitivnost; specifičnost; etiologija

Reference

*** (2014) EASL Clinical Practice Guidelines: Management of hepatitis C virus infection. J Hepatol, 60(2): 392-420
Aizawa, Y., Hokari, A. (2017) Autoimmune hepatitis: current challenges and future prospects. Clinical and Experimental Gastroenterology, Volume 10:9-18
Alboraie, M., Khairy, M., Elsharkawy, A., Elsharkawy, M., Asem, N., Abo, E.AmanyR., Elghamry, FathyG., Esmat, G. (2014) Egy-score as a noninvasive score for the assessment of hepatic fibrosis in chronic hepatitis C: A preliminary approach. Saudi Journal of Gastroenterology, 20(3): 170
Arndtz, K., Hirschfield, G.M. (2016) The Pathogenesis of Autoimmune Liver Disease. Digestive Diseases, 34(4): 327-333
Benko, T., Gallinat, A., Minor, T., Saner, F.H., Sotiropoulos, G.C., Paul, A., Hoyer, D.P. (2017) The postoperative Model for End stage Liver Disease score as a predictor of short-term outcome after transplantation of extended criteria donor livers. European Journal of Gastroenterology & Hepatology, 29(6): 716-722
Cacciola, I., Scoglio, R., Alibrandi, A., Squadrito, G., Raimondo, G. (2017) Evaluation of liver enzyme levels and identification of asymptomatic liver disease patients in primary care. Internal and Emergency Medicine, 12(2): 181-186
Chen, M., Borlak, J., Tong, W. (2016) A Model to predict severity of drug-induced liver injury in humans. Hepatology, 64(3): 931-940
Czaja, A.J. (2016) Diagnosis and Management of Autoimmune Hepatitis: Current Status and Future Directions. Gut and Liver, 10(2): 177
Danan, G., Teschke, R. (2015) RUCAM in Drug and Herb Induced Liver Injury: The Update. International Journal of Molecular Sciences, 17(1): 14
Dasarathy, S., McCullough, A.J. (2011) Alcoholic Liver Disease. u: Schiff Eugene R., Maddrey Willis C., Sorrell Michael F. [ur.] Schiff's Diseases of the Liver, Oxford, UK: Wiley, 657-702
Fisher, K., Vuppalanchi, R., Saxena, R. (2015) Drug-Induced Liver Injury. Archives of Pathology & Laboratory Medicine, 139(7): 876-887
García-Cortés, M., Stephens, C., Lucena, M. I., Fernández-Castañer, A., Andrade, R.J. (2011) Causality assessment methods in drug induced liver injury: Strengths and weaknesses. Journal of Hepatology, 55(3): 683-691
Grasselli, E., Compalati, A.D., Voci, A., Vecchione, G., Ragazzoni, M., Gallo, G., Borro, P., Sumberaz, A., Testino, G., Vergani, L. (2014) Altered oxidative stress/antioxidant status in blood of alcoholic subjects is associated with alcoholic liver disease. Drug and Alcohol Dependence, 143:112-119
Herlong, H. F., Mitchell, M.C. (2011) Laboratory Tests. u: Schiff Eugene R., Maddrey Willis C., Sorrell Michael F. [ur.] Schiff's Diseases of the Liver, Oxford, UK: Wiley, 17-43
Kullak-Ublick, G.A., Andrade, R.J., Merz, M., End, P., Benesic, A., Gerbes, A.L., Aithal, G.P. (2017) Drug-induced liver injury: recent advances in diagnosis and risk assessment. Gut, 66(6): 1154-1164
Kwo, P.Y., Cohen, S.M., Lim, J.K. (2017) ACG Clinical Guideline: Evaluation of Abnormal Liver Chemistries. American Journal of Gastroenterology, 112(1): 18-35
Liang, J., Liu, F., Wang, F., Han, T., Jing, L., Ma, Z., Gao, Y. (2017) A Noninvasive Score Model for Prediction of NASH in Patients with Chronic Hepatitis B and Nonalcoholic Fatty Liver Disease. BioMed Research International, 2017:1-7
Liu, W., Baker, R.D., Bhatia, T., Zhu, L., Baker, S.S. (2016) Pathogenesis of nonalcoholic steatohepatitis. Cellular and Molecular Life Sciences, 73(10): 1969-1987
Mannan, R., Misra, V., Misra, S.P., Singh, P.A., Dwivedi, M. (2014) A comparative evaluation of scoring systems for assessing necro-inflammatory activity and fibrosis in liver biopsies of patients with chronic viral hepatitis. Journal of Clinical and Diagnostic Research, 8(8):FC08-12
Newsome, P.N., Cramb, R., Davison, S.M., Dillon, J.F., Foulerton, M., Godfrey, E.M., Hall, R., Harrower, U., Hudson, M., Langford, A., Mackie, A., Mitchell-Thain, R., Sennett, K., Sheron, N.C., Verne, J. (2017) Guidelines on the management of abnormal liver blood tests. Gut, 67(1): 6-19
Rahimi, E., Pan, J. (2015) Prognostic models for alcoholic hepatitis. Biomarker Research, 3(1):
Ratziu, V., Charlotte, F., Heurtier, A., Gombert, S., Giral, P., Bruckert, E., Grimaldi, A., Capron, F., Poynard, T. (2005) Sampling Variability of Liver Biopsy in Nonalcoholic Fatty Liver Disease. Gastroenterology, 128(7): 1898-1906
Sanyal, A., Harrison, S., Ratziu, V., Abdelmalek, M., Diehl, A., Caldwell, S., Shiffman, M., Aguilar, R., Jia, C., McColgan, B., Myers, R., Subramanian, M., McHutchison, J., Muir, A., Afdhal, N., Bosch, J., Goodman, Z. (2017) Changes in fibrosis, but not the NAFLD Activity Score (NAS), are associated with disease progression in patients with nonalcoholic steatohepatitis (NASH) and advanced fibrosis. Journal of Hepatology, 66(1): S2-S3
Sarges, P., Steinberg, J.M., Lewis, J.H. (2016) Drug-Induced Liver Injury: Highlights from a Review of the 2015 Literature. Drug Safety, 39(9): 801-821
Stasi, C. (2016) Non-invasive assessment of liver fibrosis: Between prediction/prevention of outcomes and cost-effectiveness. World Journal of Gastroenterology, 22(4): 1711
Stickel, F., Datz, C., Hampe, J., Bataller, R. (2017) Pathophysiology and Management of Alcoholic Liver Disease: Update 2016. Gut and Liver, 11(2): 173-188
Sumida, Y., Nakajima, A., Hyogo, H., Tanaka, S., Ono, M., Fujii, H., i dr. (2015) Non-invasive scoring systems for predicting NASH in Japan: evidences from Japan Study Group of NAFLD. Integr Mol Med., 2(2): 145-9
Thakkar, S., Chen, M., Fang, H., Liu, Z., Roberts, R., Tong, W. (2018) The Liver Toxicity Knowledge Base (LKTB) and drug-induced liver injury (DILI) classification for assessment of human liver injury. Expert Review of Gastroenterology & Hepatology, 12(1): 31-38
Wernly, B., Lichtenauer, M., Franz, M., Kabisch, B., Muessig, J., Masyuk, M., Hoppe, U.C., Kelm, M., Jung, C. (2017) Model for End-stage Liver Disease excluding INR (MELD-XI) score in critically ill patients: Easily available and of prognostic relevance. PLoS One, 12(2): e0170987