Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:5
  • preuzimanja u poslednjih 30 dana:3
članak: 1 od 20  
Veterinarski glasnik
2020, vol. 74, br. 1, str. 18-33
jezik rada: engleski
vrsta rada: originalan članak
objavljeno: 26/07/2020
doi: 10.2298/VETGL190414019M
Platelet-poor plazma sportista kao potencijalni induktor miogene diferencijacije C2C12 mioblasta
aRed Star Weightlifting Club, Belgrade + Univerzitet u Beogradu, Institut za medicinska istraživanja
bUniverzitet u Beogradu, Institut za medicinska istraživanja

e-adresa: vesnai@imi.bg.ac.rs

Projekat

This work was supported by grants from the Ministry of Youth and Sport, Republic of Serbia (Contract No. 450-451/02-012713/1/2011-03)
Regenerativni i modulatorni potencijal adultnih matičnih ćelija (MPNTR - 175062)

Sažetak

Uvod. Krvna plazma obogaćena leukocitima, plazma sa niskim sadržajem leukocita i plazma sa niskim sadržajem trombocita (platelet poor plasma; PPP) su produkti krvi koji se koriste za stimulaciju regeneracije mišića. U ovom radu smo ispitivali da li zamrzavana PPP osoba koje se bave različitim tipovima fizičke aktivnosti, usmerava C2C12 myoblaste u pravcu povećane proliferacije, migracije i miogene diferencijacije, i da li utiče na morfologiju/izgled miotuba. Materijal i metode. PPP osoba muškog pola starih 15-19 godina je izolovana iz krvi dizača tegova, fudbalera i profesionalnih igrača folklora, 12 sati nakon treninga. Uzorci PPP su čuvani šest meseci na -20ºC. Uticaj PPP na proliferaciju C2C12 ćelija je analiziran MTT testom, na migraciju "scratch" testom, a uticaj na miogenu diferencijaciju je analiziran na osnovu sposobnosti PPP da indukuju formiranje miotuba. Želatinolitička aktivnost PPP je analizirana gel-zimografijom. Rezultati i zaključak. Uzorci PPP su indukovali proliferaciju i migraciju C2C12 ćelija, a kapacitet da stimulišu proliferaciju je bio: dizači tegova > igrači > fudbaleri. Kapacitet PPP da utiču na migraciju C2C12 ćelija je bio: dizači tegova = igrači > fudbaleri. Svi uzorci PPP su indukovali formiranje miotuba, ali su zapažene značajne interindividualne varijacije. PPP dizača tegova su indukovali formiranje okruglih miotuba, dok su miotube formirane u prisustvu PPP igrača i fudbalera bile izdužene. Površina miotuba se, zavisno od tipa fizičke aktivnosti, menjala po sledećem rasporedu: fudbaleri > igrači > dizači tegova. Želatinolitička aktivnost PPP je nagativno korelirala sa proliferacijom C2C12 ćelija. Rezultati ove studije pokazuju da PPP osoba koje se bave određenim tipom fizičke aktivnosti mogu da na specifičan način modulišu morfologiju/funciju mioblasta. Ovaj rezultat je od značaja za objašnjnje fiziološkog odgovora i adaptacije na vežbanje. On pokazuje i da PPP nakon dugotrajnog zamrzavanja imaju očuvanu spospbnost modifikovanja morfologije i funkcije mioblasta.

Ključne reči

C2C12 mioblasti; fizičko vežbanje; miogena diferencijacija; morfologija miotuba

Reference

Novododat članak: provera, normiranje i linkovanje referenci u toku.
Anđelić M, Pantelić M. 1995. Zbirka propisa o službi za transfuziju krvi (First edition). Blood Transfusion Institute of Serbia, Belgrade, Serbia
Anitua E., Orive G. 2012. Endogenous regenerative technology using plasma and plateletderived growth factors. Journal of Controlled Release, 157(3):317-320. https://doi. org/10.1016/j.jconrel.2011.11.011
Arnoczky S.P., Lavagnino M., Egerbacher M., Caballero O., Gardner K. 2007. Matrix metalloproteinase inhibitors prevent a decrease in the mechanical properties of stressdeprived tendons: an in vitro experimental study. The American Journal of Sports Medicine, 35(5):763-769. https://doi.org/10.1177/0363546506296043
Bausset O., Giraudo L., Veran J., Magalon J., Coudreuse J.M., Magalon G., Dubois C., Serratrice N., Dignat-George F., Sabatier F. 2012. Formulation and storage of platelet-rich plasma homemade product. Bioresearch Open Access, 1(3):115-123. https://doi.org/10.1089/ biores.2012.0225
Boppart M.D., De Lisio M., Witkowski S. 2015. Exercise and stem cells. Progress in Molecular Biology and Translational Science, 135:423-456. https://doi.org/10.1016/ bs.pmbts.2015.07.005
Boswell S.G., Cole B.J., Sundman E.A., Karas V., Fortier L.A. 2012. Platelet-rich plasma: a milieu of bioactive factors. Arthroscopy, 28(3):429-439. https://doi.org/10.1016/j. arthro.2011.10.018
Bramono D.S., Richmond J.C., Weitzel P.P., Kaplan D.L., Altman G.H. 2004. Matrix metalloproteinases and their clinical applications in orthopedics. Clinical Orthopaedics and Related Research, 428:272-285. doi: 10.1097/01.blo.0000144166.66737.3a
Dantzer D., Ferguson P., Hill R.P., Keating A., Kandel R.A., Wunder J.S., O'Sullivan B., Sandhu J., Waddell J., Bell R.S. 2003. Effect of radiation and cell implantation on wound healing in a rat model. Journal of Surgical Oncology, 83(3):185-190. https://doi.org/10.1002/ jso.10242
de Sousa Neto I.V., Durigan J.L.Q., Guzzoni V., Tibana R.A., Prestes J., de Araujo H.S.S., Marqueti R.C. 2018. Effects of Resistance Training on Matrix Metalloproteinase Activity in Skeletal Muscles and Blood Circulation During Aging. Frontiers in Physiology, 12(9):190. doi: 10.3389/fphys.2018.00190. eCollection 2018
Diaz M.F., Vaidya A.B., Evans S.M., Lee H.J., Aertker B.M., Alexander A.J., Price K.M., Ozuna J.A., Liao G.P., Aroom K.R., Xue H., Gu L., Omichi R., Bedi S., Olson S.D., Cox C.S. Jr, Wenzel P.L. 2017. Biomechanical forces promote immune regulatory function of bone marrow mesenchymal stromal cells. Stem Cells, 35(5):1259-1272. https://doi.org/10.1002/ stem.2587
Ekstrand J., Hägglund M., Walde'n, M. Epidemiology of muscle injuries in professional football (soccer). 2011. The American Journal of Sports Medicine, 39(6):1226-1232. https://doi. org/10.1177/0363546510395879
Engler A.J., Sen S., Sweeney H.L., Discher D.E. 2006. Matrix elasticity directs stem cell lineage specification. Cell, 126(4):677-689. https://doi.org/10.1016/j.cell.2006.06.044
Grassi A., Napoli F., Romandini I. 2018. Is platelet-rich plasma (PRP) effective in the treatment of acute muscle injuries? A systematic review and meta-analysis. Sports Medicine, 48(4):971-989. https://doi.org/10.1007/s40279-018-0860-1
Jung K., Lein M., Laube C., Lichtinghagen R. 2001. Blood specimen collection methods influence the concentration and the diagnostic validity of matrix metalloproteinase 9 in blood. Clinica Chimica Acta, 314(1-2):241-244. https://doi.org/10.1016/S0009-8981(01)00679-9
Kocić J., Santibañez J.F., Krstić A., Mojsilović S., Ilić V., Bugarski D. 2013. Interleukin-17 modulates myoblast cell migration by inhibiting urokinase type plasminogen activator expression through p38 mitogen-activated protein kinase. The International Journal of Biochemistry & Cell Biology, 45(2):464-475. https://doi.org/10.1016/j.biocel.2012.11.010
Kon E., Filardo G., Di Martino A., Marcacci M. 2011. Platelet-rich plasma (PRP) to treat sports injuries: evidence to support its use. Knee Surgery, Sports Traumatology, Arthroscopy, 19(4):516-527. https://doi.org/10.1007/s00167-010-1306-y
Lange C., Cakiroglu F., Spiess A.N., Cappallo-Obermann H., Dierlamm J., Zander A.R. 2007. Accelerated and safe expansion of human mesenchymal stromal cells in animal serumfree medium for transplantation and regenerative medicine. Journal of Cellular Physiology, 213(1):18-26. https://doi.org/10.1002/jcp.21081
Maffulli N., Via A.G., Oliva F. 2015. Chronic Achilles tendon disorders: Tendinopathy and chronic rupture. Clin Sports Med, 34(4):607-624
Martínez C.E., González S.A., Palma V., Smith P.C. 2016. Platelet-poor and platelet-rich plasma stimulate bone lineage differentiation in periodontal ligament stem cells. Journal of Periodontology, 87(2);e18-26. https://doi.org/10.1902/jop.2015.150360
Matsakas A. 2018. Establishing the role of platelet-derived growth factors in skeletal myogenesis. Heart, 104(Suppl 6):A85. http://dx.doi.org/10.1136/heartjnl-2018-BCS.108
Miroshnychenko O., Chang W.T., Dragoo J.L. 2017. The use of platelet-rich and plateletpoor plasma to enhance differentiation of skeletal myoblasts: Implications for the use of autologous blood products for muscle regeneration. The American Journal of Sports Medicine, 45(4):945-953. https://doi.org/10.1177/0363546516677547
Mooren F.C., Krüger K. 2015. Exercise, Autophagy, and Apoptosis. Progress in Molecular Biology and Translational Science, 135:407-422. https://doi.org/10.1016/ bs.pmbts.2015.07.023
Pifer M.A., Maerz T., Baker K.C., Anderson K. 2014. Matrix metalloproteinase content and activity in low-platelet, low-leukocyte and high-platelet, high-leukocyte platelet rich plasma (PRP) and the biologic response to PRP by human ligament fibroblasts. The American Journal of Sports Medicine, 42(5):1211-1218. https://doi.org/10.1177/0363546514524710
Rubio-Azpeitia E., Andia I. 2014. Partnership between platelet-rich plasma and mesenchymal stem cells, in vitro experience. Muscles, ligaments and tendons journal, 4(1):52-62. DOI: 10.11138/mltj/2014.4.1.052
Sheth U., Dwyer T., Smith I., Wasserstein D., Theodoropoulos J., Takhar S., Chahal J. 2018. Does platelet-rich plasma lead to earlier return to sport when compared with conservative treatment in acute muscle injuries? A systematic review and meta-analysis. Arthroscopy, 34(1):281-288.e1. https://doi.org/10.1016/j.arthro.2017.06.039
Sonker A., Dubey A., Bhatnagar A., Chaudhary R. 2015. Platelet growth factors from allogeneic platelet-rich plasma for clinical improvement in split-thickness skin graft. Asian journal of transfusion science, 9(2):155-158. doi: 10.4103/0973-6247.162712
Woods C., Hawkins R.D., Maltby S., Hulse M., Thomas A., Hodson A., Football Association Medical Research Programme. 2004. An audit of injuries in professional football-analysis of hamstring injuries. British journal of sports medicine, 38(1):36-41. http://dx.doi. org/10.1136/bjsm.2002.002352
Wroblewski A.P., Mejia H.A., Wright V.J. 2010. Application of platelet-rich plasma to enhance tissue repair. Operative Techniques in Orthopaedics, 20(2):98-105. https://doi. org/10.1053/j.oto.2009.10.006