Article metrics

  • citations in SCindeks: 0
  • citations in CrossRef:0
  • citations in Google Scholar:[=>]
  • visits in previous 30 days:39
  • full-text downloads in 30 days:27
article: 4 from 18  
Back back to result list
TIMS. Acta
2017, vol. 11, iss. 2, pp. 111-120
article language: Serbian
document type: Review Paper
doi:10.5937/timsact11-14016

Creative Commons License 4.0
The influence of physical exercise on improvement of cognitive functions
aUniversity EDUCONS, Faculty of Sport and Tourism, Novi Sad
bUniversity of Novi Sad, Faculty of Philosophy

e-mail: stanislava.popov@tims.edu.rs, jakovljev.ivana@yahoo.com

Abstract

This paper reviews contemporary studies on the influence of physical exercise on human cognitive functioning. One of the aims of the interdisciplinary neuroscience that connects psychology, medicine and sport, is in discovering the mechanisms by which physical exercise might improve cognitive functioning across the lifespan, especially in the old age, when cognitive efficiency naturally decreases. Studies have shown that physical exercise produces cognitive benefit over the lifetime, both directly, through physiological mechanisms and structural brain changes, and indirectly, through mood improvement and stress reduction. However, studies have shown that the effects of physical exercise depend on the exercise intensity - while moderate physical activity has a positive impact on the cognitive functioning, the high-intensity exercise shows the reversed effect. Also, studies have suggested that the effect of physical exercise on cognitive functioning depends on the type of physical activity. Overall, studies have demonstrated that physical exercise may produce positive effects on different cognitive processes, but still have not provided a clear mechanism underlying this influence. Also, existing studies have not revealed to what extent the various physical activities differ in their effects and whether such effects are specific or potentially beneficial for cognitive functioning in general.

Keywords

References

Abbott, R.D. (2004) Walking and Dementia in Physically Capable Elderly Men. JAMA, 292(12): 1447
Ahlskog, J. E., Geda, Y.E., Graff-Radford, N.R., Petersen, R.C. (2011) Physical Exercise as a Preventive or Disease-Modifying Treatment of Dementia and Brain Aging. Mayo Clinic Proceedings, 86(9): 876-884
Antunes, H.K.M., Santos, R.F., Cassilhas, R., Santos, R.V.T., Bueno, O.F.A., Mello, M.T.de (2006) Reviewing on physical exercise and the cognitive function. Revista Brasileira de Medicina do Esporte, 12(2): 108-114
Archer, T., Svensson, K., Alricsson, M. (2012) Physical exercise ameliorates deficits induced by traumatic brain injury. Acta Neurologica Scandinavica, 125(5): 293-302
Betz, M.J., Enerbäck, S. (2015) Human Brown Adipose Tissue: What We Have Learned So Far. Diabetes, 64(7): 2352-2360
Black, J. E., Isaacs, K. R., Anderson, B. J., Alcantara, A. A., Greenough, W. T. (1990) Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proceedings of the National Academy of Sciences, 87(14): 5568-5572
Boström, P., Wu, J., Jedrychowski, M.P., Korde, A., Ye, L., Lo, J.C., Rasbach, K.A., Boström, E.A., Choi, J.H., Long, J.Z., Kajimura, S., Zingaretti, M.C., Vind, B.F., Tu, H., Cinti, S. (2012) A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 481(7382): 463-468
Brown, B.M., Peiffer, J.J., Martins, R.N. (2013) Multiple effects of physical activity on molecular and cognitive signs of brain aging: can exercise slow neurodegeneration and delay Alzheimer's disease?. Molecular Psychiatry, 18(8): 864-874
Chodzko-Zajko, W.J., Moore, K.A. (1994) Physical Fitness and Cognitive Functioning in Aging. Exercise and Sport Sciences Reviews, 22(1): 195???220
Christou, E.A., Poston, B., Enoka, J.A., Enoka, R.M. (2007) Different Neural Adjustments Improve Endpoint Accuracy With Practice in Young and Old Adults. Journal of Neurophysiology, 97(5): 3340-3350
Colcombe, S. J., Erickson, K. I., Raz, N., Webb, A. G., Cohen, N. J., McAuley, E., Kramer, A. F. (2003) Aerobic Fitness Reduces Brain Tissue Loss in Aging Humans. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 58(2): M176-M180
Colcombe, S., Kramer, A.F. (2003) Fitness Effects on the Cognitive Function of Older Adults. Psychological Science, 14(2): 125-130
Cotman, C.W., Berchtold, N.C., Christie, L. (2007) Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30(9): 464-472
Daffner, K.R. (2010) Promoting Successful Cognitive Aging: A Comprehensive Review. Journal of Alzheimer's Disease, 19(4): 1101-1122
Daly, M., McMinn, D., Allan, J.L. (2015) A bidirectional relationship between physical activity and executive function in older adults. Frontiers in Human Neuroscience, 8: 1044
Davidson, R.J. (2004) What does the prefrontal cortex 'do' in affect: perspectives on frontal EEG asymmetry research. Biological psychology, 67(1-2): 219-33
Davis, C.L., Tomporowski, P.D., McDowell, J.E., Austin, B.P., Miller, P.H., Yanasak, N.E., Allison, J.D., Naglieri, J.A. (2011) Exercise improves executive function and achievement and alters brain activation in overweight children: A randomized, controlled trial. Health Psychology, 30(1): 91-98
Duay, D.L., Bryan, V.C. (2006) Senior Adults' Perceptions of Successful Aging. Educational Gerontology, 32(6): 423-445
Dustman, R.E., Ruhling, R.O., Russell, E.M., Shearer, D.E., Bonekat, H., Shigeoka, J.W., Wood, J.S., Bradford, D.C. (1984) Aerobic exercise training and improved neuropsychological function of older individuals. Neurobiology of Aging, 5(1): 35-42
Ellemberg, D., St-Louis-Deschênes, M. (2010) The effect of acute physical exercise on cognitive function during development. Psychology of Sport and Exercise, 11(2): 122-126
Ericsson, K.A. (1996) The acquisition of expert performance: An introduction to some of the issues. in: Ericsson K.A. [ed.] The road to excellence: The acquisition of expert performance in the arts and sciences, sports, and games, Mahwah, NJ: Erlbaum, pp. 1-50
Farmer, J., Zhao, X., van Praag, H., Wodtke, K., Gage, F., Christie, B. (2004) Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male sprague-dawley rats in vivo. Neuroscience, 124(1): 71-79
Fordyce, D.E., Farrar, R.P. (1991) Physical activity effects on hippocampal and parietal cortical cholinergic function and spatial learning in F344 rats. Behavioural Brain Research, 43(2): 115-123
Fox, K.R. (2000) The effects of exercise on self-perceptions and self-esteem. in: Biddle S.J.H.; Fox K.R.; Boutcher S.H. [ed.] Physical activity and psychological wellbeing, London: Routledge, pp. 88-117
Friedman, N.P., Miyake, A., Young, S.E., DeFries, J.C., Corley, R.P., Hewitt, J.K. (2008) Individual differences in executive functions are almost entirely genetic in origin. Journal of Experimental Psychology: General, 137(2): 201-225
Gajewski, P.D., Falkenstein, M. (2016) Physical activity and neurocognitive functioning in aging - a condensed updated review. European Review of Aging and Physical Activity, 13(1):
Galea, L.A.M., Spritzer, M.D., Barker, J.M., Pawluski, J.L. (2006) Gonadal hormone modulation of hippocampal neurogenesis in the adult. Hippocampus, 16(3): 225-232
Gomez-Pinilla, F., Hillman, C.H. (2013) The influence of exercise on cognitive abilities. Comprehensive Physiology, 403-428; 3
Hall, C.D., Smith, A.L., Keele, S.W. (2001) The impact of aerobic activity on cognitive function in older adults: A new synthesis based on the concept of executive control. European Journal of Cognitive Psychology, 13(1-2): 279-300
Hall, E.E., Ekkekakis, P., Petruzzello, S.J. (2007) Regional brain activity and strenuous exercise: Predicting affective responses using EEG asymmetry. Biological Psychology, 75(2): 194-200
Handa, R. J., Ogawa, S., Wang, J. M., Herbison, A. E. (2011) Roles for Oestrogen Receptor β in Adult Brain Function. Journal of Neuroendocrinology, 24(1): 160-173
Hassmén, P., Koivula, N., Uutela, A. (2000) Physical Exercise and Psychological Well-Being: A Population Study in Finland. Preventive Medicine, 30(1): 17-25
Hayes, S.M., Hayes, J.P., Cadden, M., Verfaellie, M. (2013) A review of cardiorespiratory fitness-related neuroplasticity in the aging brain. Frontiers in Aging Neuroscience, 5:
Henderson, V. W. (2014) Three midlife strategies to prevent cognitive impairment due to Alzheimer's disease. Climacteric, 17(sup2): 38-46
Hillman, C.H., Erickson, K.I., Kramer, A.F. (2008) Be smart, exercise your heart: exercise effects on brain and cognition. Nature Reviews Neuroscience, 9(1): 58
Hogan, C.L., Mata, J., Carstensen, L.L. (2013) Exercise holds immediate benefits for affect and cognition in younger and older adults. Psychology and Aging, 28(2): 587-594
Ito, M. (2004) 'Nurturing the brain' as an emerging research field involving child neurology. Brain and Development, 26(7): 429-433
Kalaria, R.N. (2010) Vascular basis for brain degeneration: faltering controls and risk factors for dementia. Nutrition Reviews, 68: S74-S87
Kamijo, K., Hayashi, Y., Sakai, T., Yahiro, T., Tanaka, K., Nishihira, Y. (2009) Acute Effects of Aerobic Exercise on Cognitive Function in Older Adults. Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 64B(3): 356-363
Kashihara, K., Maruyama, T., Murota, M., Nakahara, Y. (2009) Positive Effects of Acute and Moderate Physical Exercise on Cognitive Function. Journal of PHYSIOLOGICAL ANTHROPOLOGY, 28(4): 155-164
Kramer, A.F., Erickson, K.I. (2007) Capitalizing on cortical plasticity: influence of physical activity on cognition and brain function. Trends in Cognitive Sciences, 11(8): 342-348
Lakes, K.D., Hoyt, W.T. (2004) Promoting self-regulation through school-based martial arts training. Journal of Applied Developmental Psychology, 25(3): 283-302
Lauenroth, A., Ioannidis, A.E., Teichmann, B. (2016) Influence of combined physical and cognitive training on cognition: a systematic review. BMC Geriatrics, 16(1):
Lautenschlager, N.T., Cox, K., Cyarto, E.V. (2012) The influence of exercise on brain aging and dementia. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1822(3): 474-481
McMorris, T., Tallon, M., Williams, C., Sproule, J., Draper, S., Swain, J., Potter, J., Clayton, N. (2003) Incremental Exercise, Plasma Concentrations of Catecholamines, Reaction Time, and Motor Time during Performance of a Noncompatible Choice Response Time Task. Perceptual and Motor Skills, 97(2): 590-604
Moore, R.D., Romine, M.W., o`connor Patrick, J., Tomporowski, P.D. (2012) The influence of exercise-induced fatigue on cognitive function. Journal of Sports Sciences, 30(9): 841-850
Nagappan, G., Lu, B. (2005) Activity-dependent modulation of the BDNF receptor TrkB: mechanisms and implications. Trends in Neurosciences, 28(9): 464-471
Neeper, S. A., Góauctemez-Pinilla, F., Choi, J., Cotman, C. (1995) Exercise and brain neurotrophins. Nature, 373(6510): 109-109
Owen, A.M., Hampshire, A., Grahn, J.A., Stenton, R., Dajani, S., Burns, A.S., Howard, R.J., Ballard, C.G. (2010) Putting brain training to the test. Nature, 465(7299): 775-778
Paluska, S.A., Schwenk, T.L. (2000) Physical activity and mental health: current concepts. Sports medicine (Auckland, N.Z.), 29(3): 167-80
Park, H.L., o`Connell Janice, E., Thomson, R.G. (2003) A systematic review of cognitive decline in the general elderly population. International Journal of Geriatric Psychiatry, 18(12): 1121-1134
Pennington, R., Hanna, S. (2013) Acute Effects of Exercise on Cognitive Performances of Older Adults. Journal of the Arkansas Academy of Science, 109-114; 67
Pesce, C., Crova, C., Cereatti, L., Casella, R., Bellucci, M. (2009) Physical activity and mental performance in preadolescents: Effects of acute exercise on free-recall memory. Mental Health and Physical Activity, 2(1): 16-22
Ponti, G., Peretto, P., Bonfanti, L. (2008) Genesis of Neuronal and Glial Progenitors in the Cerebellar Cortex of Peripuberal and Adult Rabbits. PLoS One, 3(6): e2366
Sala-Llonch, R., Arenaza-Urquijo, E.M., Valls-Pedret, C., Vidal-Piñeiro, D., Bargalló, N., Junqué, C., Bartrés-Faz, D. (2012) Dynamic Functional Reorganizations and Relationship with Working Memory Performance in Healthy Aging. Frontiers in Human Neuroscience, 6:
Samorajski, T., Delaney, C., Durham, L., Ordy, J.M., Johnson, J.A., Dunlap, W.P. (1985) Effect of exercise on longevity, body weight, locomotor performance, and passive-avoidance memory of C57BL/6J mice. Neurobiology of Aging, 6(1): 17-24
Scully, D., Kremer, J., Meade, M. M., Graham, R., Dudgeon, K. (1998) Physical exercise and psychological well being: a critical review. British Journal of Sports Medicine, 32(2): 111-120
Shay, K.A., Roth, D.L. (1992) Association between aerobic fitness and visuospatial performance in healthy older adults. Psychology and Aging, 7(1): 15-24
Stuer, S. (2009) The effects of physical exercise on cognition. Hartford, CT: Trinity College Digital Repository, Preuzeto sa http://digitalrepository.trincoll.edu/fypapers/1
Thorell, L.B., Lindqvist, S., Bergman, N.S., Bohlin, G., Klingberg, T. (2009) Training and transfer effects of executive functions in preschool children. Developmental Science, 12(1): 106-113
Tolppanen, A., Solomon, A., Kulmala, J., Kåreholt, I., Ngandu, T., Rusanen, M., Laatikainen, T., Soininen, H., Kivipelto, M. (2015) Leisure-time physical activity from mid- to late life, body mass index, and risk of dementia. Alzheimer's & Dementia, 11(4): 434-443.e6
Tomporowski, P.D., McCullick, B., Pendleton, D.M., Pesce, C. (2015) Exercise and children's cognition: The role of exercise characteristics and a place for metacognition. Journal of Sport and Health Science, 4(1): 47-55
Trejo, J.L., Lorens-Martín, M.V., Torres-Alemán, I. (2008) The effects of exercise on spatial learning and anxiety-like behavior are mediated by an IGF-I-dependent mechanism related to hippocampal neurogenesis. Molecular and Cellular Neuroscience, 37(2): 402-411
Tsatsoulis, A., Fountoulakis, S. (2006) The Protective Role of Exercise on Stress System Dysregulation and Comorbidities. Annals of the New York Academy of Sciences, 1083(1): 196-213
van Praag, H., Kempermann, G., Gage, F.H. (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neuroscience, 2(3): 266-270
Voelcker-Rehage, C., Godde, B., Staudinger, U.M. (2011) Cardiovascular and Coordination Training Differentially Improve Cognitive Performance and Neural Processing in Older Adults. Fronties in Human Neuroscience, 5, 1-12
Voelcker-Rehage, C., Niemann, C. (2013) Structural and functional brain changes related to different types of physical activity across the life span. Neuroscience & Biobehavioral Reviews, 37(9): 2268-2295
Wu, J., Boström, P., Sparks, Lauren M., Ye, L., Choi, J., Giang, A., Khandekar, M., Virtanen, Kirsi A., Nuutila, P., Schaart, G., Huang, K., Tu, H., van Marken Lichtenbelt Wouter D., Hoeks, J., Enerbäck, S., Schrauwen, P. (2012) Beige Adipocytes Are a Distinct Type of Thermogenic Fat Cell in Mouse and Human. Cell, 150(2): 366-376
Zhao, E., Tranovich, M.J., Wright, V.J. (2014) The Role of Mobility as a Protective Factor of Cognitive Functioning in Aging Adults. Sports Health: A Multidisciplinary Approach, 6(1): 63-69
Zhu, N., Jacobs, D. R., Schreiner, P. J., Yaffe, K., Bryan, N., Launer, L. J., Whitmer, R. A., Sidney, S., Demerath, E., Thomas, W., Bouchard, C., He, K., Reis, J., Sternfeld, B. (2014) Cardiorespiratory fitness and cognitive function in middle age: The CARDIA Study. Neurology, 82(15): 1339-1346