Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:6
  • preuzimanja u poslednjih 30 dana:0

Sadržaj

članak: 4 od 87  
Back povratak na rezultate
2020, vol. 36, br. 2, str. 167-180
Masnokiselinski i aminokiselinski profil larvi crva brašnara (Tenebrio molitor L.)
aUniverzitet u Novom Sadu, Poljoprivredni fakultet
bInstitut za nizijsko šumarstvo i životnu sredinu, Novi Sad

e-adresamiroslav.urosevic@stocarstvo.edu.rs
Projekat:
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije (institucija: Univerzitet u Novom Sadu, Poljoprivredni fakultet) (MPNTR - 451-03-68/2020-14/200117)
This research was funded by Provincial Secretariat for Higher Education and Scientific Research of AP Vojvodina (Grant Number: 142-451-2144/2019-02)

Ključne reči: jestivi insekti; Tenebridae; hemijski sastav
Sažetak
Crv brašnar (Tenebrio molitor L., Coleoptera: Tenebrionidae) je jestivi insekt, rasprostranjen po celom svetu i pogodan za proizvodnju na industrijskom nivou. Brašnar se može koristiti i u komercijalne svrhe kao zamena za konvencionalne izvore proteina. U našem prethodnom istraživanju utvrđeno je da se suva materija larvi T. molitor pretežno sastoji od sirovih proteina (55,83%) i sirovih masti (25,19%), kao i malog sadržaja bezazotnih ekstraktivnih materija. Crvi su gajeni u inkubatoru pod kontrolisanim uslovima u plastičnim kutijama. Insekti su prosejani, a zatim stavljeni u posudu sa ključalom vodom i kuvani 180 sekundi. Sadržaj vlage je određen kao gubitak težine nakon sušenja larvi. Amino kiseline su analizirane na HPLC sistemu "Agilent Technologies 1260 series". Sadržaj masnih kiselina je utvrđen pomoću gasnog hromatografa "Thermo Scientific TRACE 1300" opremljenog sa plamenim jonizujućim detektorom korišćenjem "TR-FAME" kolona. Rezultati su pokazali visoki sadržaj nezasićenih masnih kiselina npr. oleinske kiseline (C18:1) koja čini većinsku lipidnu komponentu od 40,83%, za kojom sledi linolna kiselina (C18:2, omega-6 masna kiselina) sa 29,80% i linoleinska kiselina (C18:3) sa 1,08%. Esencijalne aminokiseline su visoko zastupljene u uzorcima (u % suve materije). To se pre svega odnosi na izoleucin (4,12), tirozin (3,86), fenilalanin (3,06), leucin (2,96), lizin (2,67) i metionin (1,76). Razlike koje su konstatovane u sadržaju esencijalnih masnih i amino kiselina u našim rezultatima u odnosu na analizirane literaturne podatke mogle bi biti posledica upotrebe različitih hraniva za gajenje insekata. Na osnovu svega navedenog, pokazalo se da bi larve T. molitor mogle biti pogodne kao hrana za životinje zbog svoje visoke biološke vrednosti.
Reference
Aguilar-Miranda, E.D., Lopez, M.G., Escamilla-Santana, C., Barba, D.L.R.A.P. (2002) Characteristics of maize flour tortilla supplemented with ground Tenebrio molitor larvae. Journal of Agricultural and Food Chemistry, 50: 192-195
Aletor, V.A. (1995) Compositional studies on edible tropical species of mushrooms. Food Chemistry, 54(3): 265-268
Bednarova, M., Borkovcova, M., Komprda, T. (2014) Purine derivate content and amino acid profile in larval stages of three edible insects. Journal of the Science of Food and Agriculture, 94(1): 71-76
Caparros-Megido, R., Sablon, L., Geuens, M., Brostaux, Y., Alabi, T., Blecker, C., Drugmand, D., Haubruge, E., Francis, F. (2014) Edible insects acceptance by Belgian consumers: Promising attitude for entomophagy development. Journal of Sensory Studies, 29(1): 14-20
Chen, X., Feng, Y., Zhang, H., Chen, Z. (2008) Review of the nutritive value of edible insects, in forest insects as food: Humans bite back. u: Proceedings of a FAO workshop on Asia-Pacific resources and their potential for development, 19-21 February, Chiang Mai, Thai, 85-92
Choi, H.K. (2010) A prescription for lifestyle change in patients with hyperuricemia and gout. Current Opinion in Rheumatology, 22(2): 65-72
de Foliart, G.R. (1992) Insects as human food: Gene DeFoliart discusses some nutritional and economic aspects. Crop protection, 11(5): 395-399
EFSA Scientific Committee (2015) Risk profile related to production and consumption of insects as food and feed. EFSA journal, 13 (10): 4257
FAO How to feed the world in 2050. Available: http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the _World_in_2050.pdf (06 March 2020)
Fasel, N.J., Mene-Safrane, L., Ruczynski, I., Komar, E., Christe, P. (2017) Diet induced modifications of fatty-acid composition in mealworm larvae (Tenebrio molitor). Journal of Food Research, 6 (5): 22-31
Finke, M.D. (2002) Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biology, 21(3): 269-285, Published in Affiliation with the American Zoo and Aquarium Association
Finke, M.D. (2004) Nutrient content of insects, in encyclopedia of entomology. Dordrecht, NL: Kluwer Academic, 47-60
Ghosh, S., Lee, S.M., Jung, C., Meyer-Rochow, V.B. (2017) Nutritional composition of five commercial edible insects in South Korea. Journal of Asia-Pacific Entomology, 20(2): 686-694
Grapes, M., Whiting, P., Dinan, L. (1989) Fatty acid and lipid analysis of the house cricket: Acheta domesticus. Insect Biochemistry, 19(8): 767-774
Henry, M., Gasco, L., Piccolo, G., Fountoulaki, E. (2015) Review on the use of insects in the diet of farmed fish: Past and future. Animal Feed Science and Technology, 203: 1-22
Illgner, P., Nel, E. (2000) The geography of edible insects in Sub-Saharan Africa: A study of the Mopane Caterpillar. Geographical Journal, 166(4): 336-351
Jajić, I., Krstović, S., Glamočić, D., Jakšić, S., Abramović, B. (2013) Validation of an HPLC method for the determination of amino acids in feed. Journal of the Serbian Chemical Society, vol. 78, br. 6, str. 839-850
Jajić, I., Popović, A., Urošević, M., Krstović, S., Petrović, M., Guljaš, D. (2019) Chemical composition of mealworm larvae (Tenebrio molitor) reared in Serbia. Contemporary Agriculture, 68(1-2): 23-27
Janssen, R.H., Vincken, J.P., van den Broek, L.A.M., Fogliano, V., Lakemond, C.M.M. (2017) Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. Journal of Agricultural and Food Chemistry, 65(11): 2275-2278
Jozefiak, D., Jozefiak, A., Kieronczyk, B., Rawski, M., Swiatkiewicz, S., Dlugosz, J., Engberg, R.M. (2016) Insects: A natural nutrient source for poultry: A review. Annals of Animal Science, 16(2): 297-313
Lenaerts, S., van der Borght, M., Callens, A., van Campenhout, L. (2018) Suitability of microwave drying for mealworms (Tenebrio molitor) as alternative to freeze drying: Impact on nutritional quality and colour. Food Chemistry, 254: 129-136
Longvah, T., Mangthya, K., Ramulu, P. (2011) Nutrient composition and protein quality evaluation of eri silkworm (Samia ricinii) prepupae and pupae. Food Chemistry, 128(2): 400-403
Makkar, H.P.S., Tran, G., Heuzé, V., Ankers, P. (2014) State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology, 197: 1-33
Mlcek, J., Adamkova, A., Adamek, M., Borkovcova, M., Bednarova, M., Knizkova, I. (2019) Fat from Tenebrionidae bugs: Sterols content, fatty acid profiles, and cardiovascular risk indexes. Polish Journal of Food and Nutrition Sciences, 69(3): 247-254
Muller, A., Wolf, D., Gutzeit, H.O. (2017) The black soldier fly, Hermetia illucens: A promising source for sustainable production of proteins, lipids and bioactive substances. Zeitschrift fur Naturforschung C, 72(9): 351-363
Nettleton, J.A. (1995) Omega-3 fatty acids and health. u: Chapman; Hall [ur.] Omega-3, fatty acids and health, Boston, MA, USA: Springer, 64-76
Ng, W.K., Liew, F.L., Ang, L.P., Wong, K.W. (2001) Potential of mealworm (Tenebrio molitor) as an alternative protein source in practical diets for African catfish (Clarias gariepinus). Aquaculture Research, 32: 273-280
Nielsen, A.S. (2016) Screening of alternative feed substrates for production of Tenebrio molitor larvae. Denmark: Aarhus University, M. Sc. thesis
Paul, A., Frederich, M., Megido, R., Alabi, T., Malik, P., Uyttenbroeck, R., Francis, F., Blecker, C., Haubruge, E., Lognay, G., Danthine, S. (2017) Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae. Journal of Asia-Pacific Entomology, 20(2): 337-340
Ramos-Elorduy, J., Pino, J.M. (2002) Edible insects of Chiapas, Mexico. Ecology of Food and Nutrition, 41(4): 271-299
Ramos-Elorduy, J., Moreno, J.M.P., Prado, E.E., Perez, M.A., Otero, J.L., de Guevara, O.L. (1997) Nutritional value of edible insects from the state of Oaxaca, Mexico. Journal of Food Composition and Analysis, 10(2): 142-157
Ravzanaadii, N., Kim, S., Choi, W., Hong, S., Kim, N. (2012) Nutritional value of mealworm: Tenebrio molitor as food source. International Journal of Industrial Entomology, 25(1): 93-98
Rumpold, B.A., Schlüter, O.K. (2013) Nutritional composition and safety aspects of edible insects. Molecular Nutrition & Food Research, 57(5): 802-823
Siemianowska, E., Kosewska, A., Aljewicz, M., Skibniewska, K.A., Polak-Juszczak, L., Jarocki, A., Jędras, M. (2013) Larvae of mealworm (Tenebrio molitor L.) as European novel food. Agricultural Sciences, 4(6): 287-291
Stanley-Samuelson, D.W., Loher, W. (1986) Prostaglandins in insect reproduction. Annals of the Entomological Society of America, 79(6): 841-853
Tzompa-Sosa, D.A., Yi, L., van Valenberg, H.J.F., van Boekel, M.A.J.S., Lakemond, C.M.M. (2014) Insect lipid profile: Aqueous versus organic solvent-based extraction methods. Food Research International, 62: 1087-1094
van Broekhoven, S., Oonincx, D.G., van Huis, A., van Loon, J.J. (2015) Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic byproducts. Journal of Insect Physiology, 73: 1-10
van Huis, A., Tomberlin, J.K. (2017) Future prospects of insects as food and feed. u: van Huis A.; Tomberlin J.K. [ur.] Insects as food and feed: From production to consumption, Wageningen, NL: Wageningen Academic Publishers, 430-445
van Huis, A., van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., Vantomme, P. (2013) Edible insects: Future prospects for food and feed security. Rome: FAO, 171
Veldkamp, T., Bosch, G. (2015) Insects: A protein rich feed ingredient in pig and poultry diets. Animal Frontiers, 5: 45-50
Verkerk, M.C., Tramper, J., van Trijp, J.C.M., Martens, D.E. (2007) Insect cells for human food. Biotechnology Advances, 25(2): 198-202
WHO (2007) Protein and amino acid requirements in human nutrition: Report of a joint FAO/ WHO/ UNU expert consultation. WHO Technical Report Series
Wojciak, K.M., Dolatowski, Z.J. (2012) Oxidative stability of fermented meat products. Acta Scientiarum Polonorum Technologia Alimentaria, 11: 99-109
Wyss, U. (2012) Fatty acid composition of three different grassland species. u: Proceedings of the 24th General Meeting of the European Grassland Federation, 3-7 June, Lublin, Poland, 400-402
Yang, L.F., Siriamornpun, S., Li, D.U.O. (2006) Polyunsaturated fatty acid content of edible insects in Thailand. Journal of Food Lipids, 13(3): 277-285
Zielinska, E., Baraniak, B., Karas, M., Rybczynska, K., Jakubczyk, A. (2015) Selected species of edible insects as a source of nutrient composition. Food Research International, 77: 460-466
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.2298/BAH2002167J
objavljen u SCIndeksu: 26.07.2020.
Creative Commons License 4.0