Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:3
  • preuzimanja u poslednjih 30 dana:2
članak: 10 od 157  
Back povratak na rezultate
Acta medica Medianae
2019, vol. 58, br. 4, str. 113-119
jezik rada: engleski
vrsta rada: pregledni članak
objavljeno: 24/02/2020
doi: 10.5633/amm.2019.0417_NE_RADI
Creative Commons License 4.0
Uloga mezenhimalnih matičnih ćelija u terapiji infarkta miokarda
aKlinički centar Kragujevac, Klinika za kardiologiju + Univerzitet u Kragujevcu, Medicinski fakultet
bHealth Center Kragujevac, Kragujevac

e-adresa: antonzjnet@gmail.com

Sažetak

Mezenhimalne matične ćelije (eng. Mesenchymal stem cells (MSCs)) su multipotentne stromalne ćelije koje mogu da se diferenciraju u osteoblaste, hondrocite i adipocite. Početkom 21. veka, in vivo studije su pokazale da humane MSCs mogu da transdiferenciraju u ćelije dobijene od endoderma i kardiomiocitni fenotip. Kada kardiomiociti nisu snabdeveni krvlju, kao što je slučaj sa infarktom miokarda, gubitak funkcionalnih kardiomiocita odigrava se putem nekroze, apoptoze i autofagije. Pored prolaska kroz različite faze inflamacije i ozdravljenja, dinamično mikrookruženje u infarciranom tkivu takođe eksprimira citokine, koji promovišu migraciju matičnih ćelija i njihov homing. S obzirom na neizvesnu sudbinu miokarda diktiranu stepenom nekroze, postaje jasno da je u cilju boljeg ishoda infarkta miokarda, neophodno pronaći adekvatnu terapiju. Moguće rešenje ove dileme je ciljana terapija matičnim ćelijama.

Ključne reči

Reference

Abbate, A., Bussani, R., Biondi-Zoccai, G.G.L., Santini, D., Petrolini, A., Giorgio, F.D., Vasaturo, F., Scarpa, S., Severino, A., Liuzzo, G., Leone, A.M., Baldi, F., Sinagra, G. (2005) Infarct-related artery occlusion, tissue markers of ischaemia, and increased apoptosis in the peri-infarct viable myocardium. European Heart Journal, 26(19): 2039-2045
Askari, A.T., Unzek, S., Popović, Z.B., Goldman, C.K., Forudi, F., Kiedrowski, M., Rovner, A., Ellis, S.G., Thomas, J.D., Dicorleto, P.E., Topol, E.J., Penn, M.S. (2003) Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet, 362(9385): 697-703
Boyle, A.J., McNiece, I.K., Hare, J.M. (2010) Mesenchymal stem cell therapy for cardiac repair. Methods in Molecular Biology, 660: 65-84
Brighton, C.T., Hunt, R.M. (1997) Early histologic and ultrastructural changes in microvessels of periosteal callus. Journal of Orthopaedic Trauma, 11(4): 244-253
Caplan, A.I. (1986) Molecular and cellular differentiation of muscle, cartilage, and bone in the developing limb. Prog Clin Biol Res, 217B:307-18
Caplan, A.I. (1991) Mesenchymal stem cells. Journal of Orthopaedic Research, 9(5): 641-650
Cotran, R.S., Kumar, V., Robbins, S.L., Schoen, F.J. (1994) Inflammation and repair. u: Robbins pathologic basis of disease, Philadelphia: WB Saunders Company, p. 51-93
da Silva, M.L., Chagastelles, P.C., Nardi, N.B. (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science, 119(11): 2204-2213
Dauwe, D.F., Janssens, S.P. (2011) Stem cell therapy for the treatment of myocardial infarction. Curr Pharm Des, 17(30):3328-40
Dominici, M., Le, B.K., Mueller, I., Slaper-Cortenbach, I., Marini, F.C., Krause, D.S., Deans, R.J., Keating, A., Prockop, D.J., Horwitz, E.M. (2006) Minimal criteria for defining multipotent mesenchymal stromal cells: The international society for cellular therapy position statement. Cytotherapy, 8(4): 315-317
Friedenstein, A.J., Deriglasova, U.F., Kulagina, N.N., Panasuk, A.F., Rudakowa, S.F., Luriá, E.A., i dr. (1974) Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol, 2(2): 83-92
Friedenstein, A.J., Chailakhjan, R.K., Lalykina, K.S. (1970) The development of fibroblast colonies in monolayer cultures of Guinea-pig bone marrow and spleen cells. Cell Proliferation Kinet, 3(4): 393-403
Friedenstein, A.J., Chailakhyan, R.K., Latsinik, N.V., Panasyuk, A.F., Keiliss-Borok, I.V. (1974) Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues: Cloning in vitro and retransplantation in vivo. Transplantation, 17(4): 331-371
Guo, J., Lin, G.S., Bao, C.Y., Hu, Z.M., Hu, M.M. (2007) Anti-inflammation role for mesenchymal stem cells transplantation in myocardial infarction. Inflammation, 30(3-4): 97-104
Hale, S.L., Kloner, R.A. (2006) Ranolazine, an inhibitor of the late sodium channel current, reduces postischemic myocardial dysfunction in the rabbit. J Cardiovasc Pharmacol Ther, 11(4):249-55
Hsieh, P.C.H., Segers, V.F.M., Davis, M.E., Macgillivray, C., Gannon, J., Molkentin, J.D., Robbins, J., Lee, R.T. (2007) Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nature Medicine, 13(8): 970-974
Kanamori, H., Takemura, G., Goto, K., Maruyama, R., Ono, K., Nagao, K., i dr. (2011) Autophagy limits acute myocardial infarction induced by permanent coronary artery occlusion. Am J Physiol Heart Circ Physiol, 300 (6):H2261-71
Kopen, G.C., Prockop, D.J., Phinney, D.G. (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proceedings of the National Academy of Sciences, 96(19): 10711-10716
Kushner, F.G., Hand, M., Jr, S.S.C., Rd, K.S.B., Anderson, J.L., Antman, E.M., i dr. (2009) American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. 2009 Focused Updates: ACC/AHA Guidelines for the Management of Patients with ST-Elevation Myocardial Infarction (updating the 2004 Guideline and 2. Circulation, 120(22):2271-306
Laframboise, W.A., Bombach, K.L., Dhir, R.J., Muha, N., Cullen, R.F., Pogozelski, A.R., Turk, D., George, J., Guthrie, R., Magovern, J. (2005) Molecular dynamics of the compensatory response to myocardial infarct. Journal of Molecular and Cellular Cardiology, 38(1): 103-117
Li, W., Ren, G., Huang, Y., Su, J., Han, Y., Li, J., Chen, X., Cao, K., Chen, Q., Shou, P., Zhang, L., Yuan, Z.-.R., Roberts, A.I., Shi, S., Le, A.D., Shi, Y. (2012) Mesenchymal stem cells: A double-edged sword in regulating immune responses. Cell Death & Differentiation, 19(9): 1505-1513
Madonna, R., van Laake, L.W., Davidson, S.M., Engel, F.B., Hausenloy, D.J., Lecour, S., i dr. (2016) Position paper of the European Society of Cardiology Working Group cellular biology of the heart: Cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. Eur Heart J, 37(23):1789-98
Mummery, C.L., Davis, R.P., Krieger, J.E. (2010) Challenges in using stem cells for cardiac repair. Sci Transl Med, 2(27):27ps17
Murphy, M.B., Moncivais, K., Caplan, A.I. (2013) Mesenchymal stem cells: Environmentally responsive therapeutics for regenerative medicine. Experimental & Molecular Medicine, 45(11): e54-e54
Piersma, A.H., Brockbank, K.G.M., Ploemacher, R.E. (1985) Characterization of fibroblastic stromal cells from murine bone marrow. Experimental Hematology, 13(4): 237-280
Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., i dr. (1999) Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411): 143-147
Pittenger, M.F., Martin, B.J. (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circulation Research, 95(1): 9-20
Psaltis, P.J., Zannettino, A.C.W., Worthley, S.G., Gronthos, S. (2008) Concise review: Mesenchymal stromal cells: Potential for cardiovascular repair. Stem Cells, 26(9): 2201-2210
Reffelmann, T., Könemann, S., Kloner, R.A. (2009) Promise of bloodand bone marrow-derived stem cell transplantation for functional cardiac repair: Putting it in perspective with existing therapy. J Am Coll Cardiol, 53(4):305-8
Reimer, K.A., Jennings, R.B. (1979) The 'wavefront phenomenon' of myocardial ischemic cell death. II: Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest, 40(6):633-44
Sato, Y., Araki, H., Kato, J., Nakamura, K., Kawano, Y., Kobune, M., Sato, T., Miyanishi, K., Takayama, T., Takahashi, M., Takimoto, R., Iyama, S., Matsunaga, T., Ohtani, S., Matsuura, A. (2005) Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood, 106(2): 756-763
Schaper, J. (1986) Ultrastructural changes of the myocardium in regional ischaemia and infarction. Eur Heart J, 7 Suppl B:3-9
Tölli, M.A., Ferreira, M.P.A., Kinnunen, S.M., Rysä, J., Mäkilä, E.M., Szabó, Z., Serpi, R.E., Ohukainen, P.J., Välimäki, M.J., Correia, A.M.R., Salonen, J.J., Hirvonen, J.T., Ruskoaho, H.J., Santos, H.A. (2014) In vivo biocompatibility of porous silicon biomaterials for drug delivery to the heart. Biomaterials, 35(29): 8394-8405
Toma, C., Pittenger, M.F., Cahill, K.S., Byrne, B.J., Kessler, P.D. (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105(1): 93-98
Wakitani, S., Saito, T., Caplan, A.I. (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle & Nerve, 18(12): 1417-1426
Wang, H.S., Hung, S.C., Peng, S.T., Huang, C.C., Wei, H.M., Guo, Y.J., i dr. (2004) Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells, 22(7):1330-7
Wang, H.S., Hung, S.C., Peng, S.T., Huang, C.C., Wei, H.M., Guo, Y.J., Fu, Y., Lai, M., Chen, C. (2004) Mesenchymal stem cells in the wharton's jelly of the human umbilical cord. Stem Cells, 22(7): 1330-1337
Xu, W., Zhang, X., Qian, H., Zhu, W., Sun, X., Hu, J., Zhou, H., Chen, Y. (2004) Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. Experimental Biology and Medicine (Maywood), 229(7): 623-631