Metrika članka

  • citati u SCindeksu: [4]
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:2
  • preuzimanja u poslednjih 30 dana:0
članak: 5 od 7  
Back povratak na rezultate
Medicinski pregled
2014, vol. 67, br. 9-10, str. 345-352
jezik rada: engleski
vrsta rada: članak
objavljeno: 10/10/2014
doi: 10.2298/MPNS1410345S
Modulatorna uloga azot-oksida na srčane performance
Univerzitet u Prištini sa privremenim sedištem u Kosovskoj Mitrovici, Medicinski fakultet, Institut za fiziologiju

e-adresa: sonja.smiljic@med.pr.ac.rs

Sažetak

Azot-oksid proizvode gotovo sve ćelije srca, endotelne ćelije, kardiomiociti i nervna vlakna. Sintetiše ga enzim, sintaza azot-oksida koja se javlja u endotelnoj, neuralnoj i inducibilnoj formi. Distribuciju sintaza azot-oksida u srcu karakteriše izražena neuniformnost. Azot-oksid ima efekte u fiziološkim i patofiziološkim stanjima. Fiziološki efekti niskih koncentracija azot-oksida koji se oslobađa u normalnim uslovima pod dejstvom konstitutivnih enzima odvijaju se preko cikličnog guanozin-monofosfata. Sintetisan azot-oksid ostvaruje svoj efekat u ćelijama u kojima je proizveden, autokrino, ili difundujući u susedne ćelije, parakrino. Azot-oksid deluje putem regulacije tonusa koronarnih krvnih sudova, utiče na kontraktilnost kardiomiocita, na dozno-zavisan način ostvaruje inotropni efekat i kontroliše ćelijsku respiraciju. Drugi efekti azot-oksida u kardiovaskularnom sistemu su da dovodi do hiperpolarizacije ćelija glatke muskulature krvnih sudova, inhibira adheziju monocita, inhibira migraciju, adheziju i agregaciju trombocita i proliferaciju ćelija glatke muskulature i fibroblasta. Na ovim efektima se zasniva antiaterosklerotsko dejstvo azot-oksida. Azot-oksid je slab slobodni radikal u gasovitom stanju a citotoksična i/ili citoprotektivna dejstva viših koncentracija, u vezi su sa hemijskom strukturom azotoksida kao slobodnog radikala. Prekomerna proizvodnja azotoksida aktivacijom inducibilne sintaze azot-oksida može dovesti do velikih poremećaja funkcije kardiomiocita i srčane insuficijencije. Razumevanje molekularnih mehanizma azotoksida u signalnim putevima u srcu može da obezbedi novi strategijski pristup u prevenciji i terapiji bolesti kardiovaskularnog sistema.

Ključne reči

Reference

Andries, L.J., Brutsaert, D.L., Sys, S.U. (1998) Nonuniformity of endothelial constitutive nitric oxide synthase distribution in cardiac endothelium. Circ Res, 82(2): 195-203, http://circres.ahajournals.org/content/82/2/195.full.pdf
Babaei, S., Teichert-Kuliszewska, K., Monge, J.C., Mohamed, F., Bendeck, M.P., Stewart, D.J. (1998) Role of nitric oxide in the angiogenic response in vitro to basic fibroblast growth factor. Circ Res, 82(9): 1007-15, http://circres.ahajournals.org/content/82/9/1007.full
Balligand, J.L., Kobzik, L., Han, X., Kaye, D.M., Belhassen, L., O`Hara, D.S., Kelly, R.A., Smith, T.W., Michel, T. (1995) Nitric oxide-dependent parasympathetic signaling is due to activation of constitutive endothelial (type III) nitric oxide synthase in cardiac myocytes. J Biol Chem, 270(24): 14582-6, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC508985/
Balligand, J.L., Cannon, P.J. (1997) Nitric oxide synthases and cardiac muscle. Autocrine and paracrine influences. Arterioscler Thromb Vasc Biol, 17(10): 1846-58, http://atvb.ahajournals.org/content/17/10/1846.full
Balligand, J.L. (1999) Regulation of cardiac beta-adrenergic response by nitric oxide. Cardiovasc Res, 43(3): 607-20, http://cardiovascres.oxfordjournals.org/content/43/3/607.full
Bayraktutan, U., Yang, Z.K., Shah, A.M. (1998) Selective dysregulation of nitric oxide synthase type 3 in cardiac myocytes but not coronary microvascular endothelial cells of spontaneously hypertensive rat. Cardiovasc Res, 38(3): 719-26, http://cardiovascres.oxfordjournals.org/content/38/3/719.full
Bernstein, R.D., Ochoa, F.Y., Xu, X., Forfia, P., Shen, W., Thompson, C.I., Hintze, T.H. (1996) Function and production of nitric oxide in the coronary circulation of the conscious dog during exercise. Circ Res, 79(4): 840-8, http://circres.ahajournals.org/content/79/4/840.full
Brady, A.J., i dr. (1993) Nitric oxide attenuates cardiac myocyte contraction. Am J Physiol Heart Circ Physiol, 265: 176
Bredt, D.S. (2003) Nitric oxide signaling specificity -- the heart of the problem. Journal of Cell Science, 116(1): 9-15, http://jcs.biologists.org/content/116/1/9.full.pdf
Brutsaert, D.L., Fransen, P., Andries, L.J., de Keulenaer, G.W., Sys, S.U. (1998) Cardiac endothelium and myocardial function. Cardiovasc Res, 38(2): 281-90, http://cardiovascres.oxfordjournals.org/content/38/2/281.full
Brutsaert, D.L. (2003) Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev, 83(1): 59-115
Chesnais, J.M., Fischmeister, R., Méry, P.F. (1999) Positive and negative inotropic effects of NO donors in atrial and ventricular fibres of the frog heart. J Physiol, 518 ( Pt 2): 449-61, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2269428/
Cotton, J.M., Kearney, M.T., MacCarthy, P.A., Grocott-Mason, R.M., McClean, D.R., Heymes, C., Richardson, P.J., Shah, A.M. (2001) Effects of nitric oxide synthase inhibition on Basal function and the force-frequency relationship in the normal and failing human heart in vivo. Circulation, 104(19): 2318-23, http://circ.ahajournals.org/content/104/19/2318.full
Eliseyeva, M.R. (2013) Endothelium: A long road from mystery to discovery. International Journal of Biomedicine, 3(1): 9-11, http://www.ijbm.org/articles/3_1_Edit.pdf
Emanueli, C., Maestri, R., Corradi, D., Marchione, R., Minasi, A., Tozzi, M.G., Salis, M.B., Straino, S., Capogrossi, M.C., Olivetti, G., Madeddu, P. (1999) Dilated and failing cardiomyopathy in bradykinin B(2) receptor knockout mice. Circulation, 100(23): 2359-65, http://circ.ahajournals.org/content/100/23/2359.full
Feng, Q., Song, W., Lu, X., Hamilton, J.A., Lei, M., Peng, T., Yee, S. (2002) Development of heart failure and congenital septal defects in mice lacking endothelial nitric oxide synthase. Circulation, 106(7): 873-9, http://circ.ahajournals.org/content/106/7/873.full
Feron, O., Belhassen, L., Kobzik, L., Smith, T.W., Kelly, R.A., Michel, T. (1996) Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J Biol Chem, 271(37): 22810-4, http://cardiovascres.oxfordjournals.org/content/69/4/788.long
Flesch, M., Kilter, H., Cremers, B., Lenz, O., Südkamp, M., Kuhn-Regnier, F., Böhm, M. (1997) Acute effects of nitric oxide and cyclic GMP on human myocardial contractility. J Pharmacol Exp Ther, 281(3): 1340-9, http://jpet.aspetjournals.org/content/281/3/1340.full
Fukuchi, M., Hussain, S.N., Giaid, A. (1998) Heterogeneous expression and activity of endothelial and inducible nitric oxide synthases in end-stage human heart failure: their relation to lesion site and beta-adrenergic receptor therapy. Circulation, 98(2): 132-9
Furchgott, R.F., Zawadzki, J.V. (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 288: 373, http://www.nature.com/nature/journal/v288/n5789/abs/288373a0.html
Gyurko, R., i dr. (2000) Modulation of mouse cardiac function in vivo by eNOS and ANP. Am J Physiol Heart Circ Physiol, 278: 971, http://circres.ahajournals.org/content/94/5/657.full.pdf?origin=publication_detail
Habib, F.M., Springall, D.R., Davies, G.J., Oakley, C.M., Yacoub, M.H., Polak, J.M. (1996) Tumour necrosis factor and inducible nitric oxide synthase in dilated cardiomyopathy. Lancet, 347(9009): 1151-5
Kanai, A.J., i dr. (1997) Beta-adrenergic regulation of constitutive nitric oxide synthase in cardiac myocytes. Am J Physiol Cell Physiol, 273: 137
Kichuk, M.R., Seyedi, N., Zhang, X., Marboe, C.C., Michler, R.E., Addonizio, L.J., Kaley, G., Nasjletti, A., Hintze, T.H. (1996) Regulation of nitric oxide production in human coronary microvessels and the contribution of local kinin formation. Circulation, 94(1): 44-51, http://circ.ahajournals.org/content/94/1/44.long
Kitakaze, M., Node, K., Komamura, K., Minamino, T., Inoue, M., Hori, M., Kamada, T. (1995) Evidence for nitric oxide generation in the cardiomyocytes: its augmentation by hypoxia. J Mol Cell Cardiol, 27(10): 2149-54, http://www.ncbi.nlm.nih.gov/pubmed/8576931
Kojda, G., Kottenberg, K., Noack, E. (1997) Inhibition of nitric oxide synthase and soluble guanylate cyclase induces cardiodepressive effects in normal rat hearts. Eur J Pharmacol, 334(2-3): 181-90, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2269760/
Lee, T.C., Zhao, Y.D., Courtman, D.W., Stewart, D.J. (2000) Abnormal aortic valve development in mice lacking endothelial nitric oxide synthase. Circulation, 101(20): 2345-8, http://circ.ahajournals.org/content/101/20/2345.full
Leskinen, H., Vuolteenaho, O., Leppäluoto, J., Ruskoaho, H. (1995) Role of nitric oxide on cardiac hormone secretion: effect of NG-nitro-L-arginine methyl ester on atrial natriuretic peptide and brain natriuretic peptide release. Endocrinology, 136(3): 1241-9
Liu, Y., Feng, Q. (2012) NOing the heart: Role of nitric oxide synthase-3 in heart development. Diferentiation, 84(1): 54
MacCarthy, P.A., Shah, A.M. (2000) Impaired endothelium-dependent regulation of ventricular relaxation in pressure-overload cardiac hypertrophy. Circulation, 101(15): 1854-60, http://circ.ahajournals.org/content/101/15/1854.full.pdf
Massion, P.B., Feron, O., Dessy, C., Balligand, J.L. (2003) Nitric oxide and cardiac function: ten years after, and continuing. Circ Res, 93(5): 388-98
Mohan, P., Brutsaert, D.L., Paulus, W.J., Sys, S.U. (1996) Myocardial contractile response to nitric oxide and cGMP. Circulation, 93(6): 1223-9, http://circ.ahajournals.org/content/93/6/1223.full
Paulus, W.J., Shah, A.M. (1999) NO and cardiac diastolic function. Cardiovasc Res, 43(3): 595-606, http://cardiovascres.oxfordjournals.org/content/43/3/595.long
Pešić, S., Radenković, M., Grbović, L. (2006) Disfunkcija endotela - mehanizmi nastanka i terapijske mogućnosti. Medicinski pregled, vol. 59, br. 7-8, str. 335-341
Petroff, M.G., Kim, S.H., Pepe, S., Dessy, C., Marbán, E., Balligand, J.L., Sollott, S.J. (2001) Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes. Nat Cell Biol, 3(10): 867-73
Pinsky, D.J., Pattons, S., Measaros, S. (1997) Mechanical transduction of nitric oxide synthesis in the beating heart. Circ Res, 81: 372
Pittis, M., Zhang, X., Loke, K.E., Mital, S., Kaley, G., Hintze, T.H. (2000) Canine coronary microvessel NO production regulates oxygen consumption in ecNOS knockout mouse heart. J Mol Cell Cardiol, 32(7): 1141-6, http://www.sciencedirect.com/science/article/pii/S0022282800911544
Rang, H.P., Dale, M.M., Ritter, J.M., Moore, P.K. (2005) Farmakologija. Data status
Ritchie, R.H., Marsh, J.D., Lancaster, W.D., Diglio, C.A., Schiebinger, R.J. (1998) Bradykinin blocks angiotensin II-induced hypertrophy in the presence of endothelial cells. Hypertension, 31(1): 39-44
Shah, A.M., MacCarthy, P.A. (2000) Paracrine and autocrine effects of nitric oxide on myocardial function. Pharmacol Ther, 86(1): 49-86
Shinke, T., Takaoka, H., Takeuchi, M., Hata, K., Kawai, H., Okubo, H., Kijima, Y., Murata, T., Yokoyama, M. (2000) Nitric oxide spares myocardial oxygen consumption through attenuation of contractile response to beta-adrenergic stimulation in patients with idiopathic dilated cardiomyopathy. Circulation, 101(16): 1925-30
Smiljić, S., Radović, D., Trajković, G., Nestorović, V., Biševac, B., Stanojević, Z. (2008) Uticaj teofilina i imidazola na kontraktilnost desne komore srca pacova sa intaktnim i uklonjenim endokardnim endotelom. The journal of the medical society of the Republic of Srpska, 39: 1-2, http://spo.escardio.org/eslides/view.aspx?eevtid=33&fp=5478
Smiljić, S., Radović, D., Miletić, M., Nestorović, V., Trajković, G., Savić, S. (2010) Uticaj modifikatora metabolizma cikličnih nukleotida na kontraktilnost desne komore srca s očuvanim i uklonjenim endokardnim endotelom. Srpski arhiv za celokupno lekarstvo, vol. 138, br. 9-10, str. 577-583
Sys, S.U., de Keulenaer, G.W., Brutsaert, D.L. (1998) Reappraisal of the multicellular preparation for the in vitro physiopharmacological evaluation of myocardial performance. Adv Exp Med Biol, 453: 441-50; discussion 451
Tatsumi, T., Matoba, S., Kawahara, A., Keira, N., Shiraishi, J., Akashi, K., Kobara, M., Tanaka, T., Katamura, M., Nakagawa, C., Ohta, B., Shirayama, T., Takeda, K., Asayama, J., Fliss, H., Nakagawa, M. (2000) Cytokine-induced nitric oxide production inhibits mitochondrial energy production and impairs contractile function in rat cardiac myocytes. J Am Coll Cardiol, 35(5): 1338-46, http://content.onlinejacc.org/article.aspx?articleid=1126357
Ursell, P.C., Mayes, M. (1996) Endothelial isoform of nitric oxide synthase in rat heart increases during development. Anat Rec, 246(4): 465-72, http://onlinelibrary.wiley.com/doi/10.1002/%28SICI%291097-0185%28199612%29246:4%3C465::AID-AR6%3E3.0.CO;2-U/abstract
Vila-Petroff, M.G., Younes, A., Egan, J., Lakatta, E.G., Sollott, S.J. (1999) Activation of distinct cAMP-dependent and cGMP-dependent pathways by nitric oxide in cardiac myocytes. Circ Res, 84(9): 1020-31, http://circres.ahajournals.org/content/84/9/1020.full
Xie, Y.W., Shen, W., Zhao, G., Xu, X., Wolin, M.S., Hintze, T.H. (1996) Role of endothelium-derived nitric oxide in the modulation of canine myocardial mitochondrial respiration in vitro. Implications for the development of heart failure. Circ Res, 79(3): 381-7, http://circres.ahajournals.org/content/87/12/1108.full
Young, L.H., Ikeda, Y., Lefer, A.M. (2001) Caveolin-1 peptide exerts cardioprotective effects in myocardial ischemia-reperfusion via nitric oxide mechanism. Am J Physiol Heart Circ Physiol, 280(6): H2489-95