Metrika članka

  • citati u SCindeksu: [2]
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:9
  • preuzimanja u poslednjih 30 dana:2
članak: 6 od 7  
Back povratak na rezultate
Vojnosanitetski pregled
2014, vol. 71, br. 3, str. 285-292
jezik rada: engleski
vrsta rada: izvorni naučni članak
objavljeno: 20/03/2014
doi: 10.2298/VSP1403285B
Nova platforma za brzo simuliranje interakcije fluida i strukture pri strujanju krvi kroz realne geometrije bifurkacija koronarne arterije
aUniverzitet u Kragujevcu, Fakultet inženjerskih nauka
bUniverzitet u Beogradu, Medicinski fakultet

e-adresa: blagoje@kg.ac.rs

Projekat

Razvoj softvera za rešavanje spregnutih multifizičkih problema (MPNTR - 32036)
Neinvazivna i invazivna dijagnostika i perkutano lečenje suženja na račvama krvnih sudova (MPNTR - 175082)

Sažetak

Uvod/Cilj. Praktične poteškoće, posebno dugo vreme razvoja modela, ograničavaju tipove i primenljivost računske dinamike fluida u numeričkom modeliranju strujanja krvi za veći broj bolesnika. U ovim simulacijama, parametri strujanja koji najviše pokazuju su endotelijski smicajni napon i oscilujući smicajni indeks. Cilj rada bio je da se analizira njihova uloga u dijagnozi i prognoziranju razvoja plaka na račvama (bifurkacijama) koronarnih arterija. Metode. Razvili smo novu tehniku kompjuterskog modeliranja za potrebe brzih kardiovaskularnih hemodinamičkih simulacija uzimajući u obzir interakcije između domena fluida (krv) i domena strukture (arterijskog zida). Generisana su dva numerička modela koja predstavljaju posmatrane poddomene bifurkacije koronarne arterije slučajno izabranog bolesnika, korišćenjem multi-slajsne kompjuterizovane tomografije (MSCT) koronarografije i ultrazvučnog merenja brzine strujanja krvi. Simulacija koronarnog strujanja je izvršena korišćenjem sopstvenog softvera PAK-FS. Rezultati. Sveukupno ponašanje strujanja krvi u bifurkacijama koronarnih arterija je opisano preko sledećih parametara: brzina, pritisak, endotelijski smicajni napon, oscilujući smicajni indeks, napon na zidu arterije i čvorna pomeranja. Mesta gde je (a) endotelijski smicajni napon manji od 1,5 i (b) oscilujući smicajni indeks veoma mali (blizak ili jednak 0) su sklona razvoju plaka. Zaključak. Simulacija interakcije fluida-strukture metodom konačnih elemenata je korišćena da se ispitaju dinamika strujanja krvi i mehaničke karakteristike zida bifurkacije koronarne arterije slučajno izabranog bolesnika. U numeričkom modelu je otkriveno da lateralni zidovi glavne grane i lateralni zidovi distalno od karine imaju nizak endotelijski smicajni napon što je preduslov za razvoj ateroskleroze na tim mestima. Ovaj zaključak je potvrđen i niskim vrednostima oscilatornog smicajnog indeksa na istim mestima.

Ključne reči

Reference

Bathe, K. (1996) Finite element procedures in engineering analysis. Englewood Cliffs, NJ: Prentice Hall
Bazilevs, Y., Hsu, M.C., Zhang, Y., Wang, W., Liang, X., Kvamsdal, T., Brekken, R., Isaksen, J.G. (2009) A fully-coupled fluid-structure interaction simulation of cerebral aneurysms. Computational Mechanics, 46(1): 3-16
Chatzizisis, Y.S., Coskun, A.U., Jonas, M., Edelman, E.R., Feldman, C.L., Stone, P.H. (2007) Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. Journal of the American College of Cardiology, 49(25): 2379-93
de Santis, G., de Beule, M., van Canneyt, K., Segers, P., Verdonck, P., Verhegghe, B. (2011) Full-hexahedral structured meshing for image-based computational vascular modeling. Medical engineering & physics, 33(10): 1318-25
Gambillara, V., Chambaz, C., Montorzi, G., Roy, S., Stergiopulos, N., Silacci, P. (2006) Plaque-prone hemodynamics impair endothelial function in pig carotid arteries. American journal of physiology. Heart and circulatory physiology, 290(6): H2320-8
Giannoglou, G., Antoniadis, A., Koskinas, K., Chatzizisis, Y. (2010) Flow and atherosclerosis in coronary bifurcations. EuroIntervention, 6(J): J16-J23
Gimbrone, M.A., Topper, J.N., Nagel, T., Anderson, K.R., Garcia-Cardeña, G. (2006) Endothelial Dysfunction, Hemodynamic Forces, and Atherogenesisa. Annals of the New York Academy of Sciences, 902(1): 230-240
Goubergrits, L., Affeld, K., Fernandez-Britto, J., Falcon, L. (2003) Investigation of geometry and atherosclerosis in the human carotid bifurcations. Journal of Mechanics in Medicine and Biology, 03(01): 31-48
Kim, H.J., Vignon-Clementel, I.E., Figueroa, C.A., Jansen, K.E., Taylor, C.A. (2010) Developing computational methods for three-dimensional finite element simulations of coronary blood flow. Finite Elements in Analysis and Design, 46(6): 514-525
Kojić, M., Slavković, R., Živković, M., Grujović, N. (1998) Metod konačnih elemenata I - linearna analiza. Kragujevac: Mašinski fakultet
Kojić, M., Filipović, N., Stojanović, B., Kojić, N. (2008) Computer Modeling in Bioengineering: Theoretical background, examples and software. Chichester: John Wiley & Sons
Ku, D.N., Giddens, D.P., Zarins, C.K., Glagov, S. (1985) Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis (Dallas, Tex.), 5(3): 293-302
Ku, D.N. (1997) Blood flow in arteries. Annual Review of Fluid Mechanics, 29(1): 399-434
Kung, E.O., Les, A.S., Figueroa, C., Medina, F., Arcaute, K., Wicker, R.B., McConnell, M.V., Taylor, C.A. (2011) In vitro validation of finite element analysis of blood flow in deformable models. Annals of biomedical engineering, 39(7): 1947-60
Liou, Y.C. (1998) A transfinite interpolation method of grid generation based on multipoints. Journal of Scientific Computing, 13(1): 105-114
Malek, A.M., Alper, S.L., Izumo, S. (1999) Hemodynamic shear stress and its role in atherosclerosis. JAMA, 282(21): 2035-42
Mariūnas, M., Kuzborska, Z. (2011) Influence of load magnitude and duration on the relationship between human arterial blood pressure and flow rate. Acta of bioengineering and biomechanics, 13(2): 67-72
Moore, J.E., Xu, C., Glagov, S., Zarins, C.K., Ku, D.N. (1994) Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis. Atherosclerosis, 110(2): 225-40
Nakazawa, G., Yazdani, S.K., Finn, A.V., Vorpahl, M., Kolodgie, F.D., Virmani, R. (2010) Pathological findings at bifurcation lesions: the impact of flow distribution on atherosclerosis and arterial healing after stent implantation. Journal of the American College of Cardiology, 55(16): 1679-87
Nguyen, K.T., Clark, C.D., Chancellor, T.J., Papavassiliou, D.V. (2008) Carotid geometry effects on blood flow and on risk for vascular disease. Journal of biomechanics, 41(1): 11-9
Nichols, W.W., Orourke, M.F. (2005) McDonalds blood flow in arteries: Theoretica, experimental and clinical principles. London: A Hodder Arnold Publicatio
Perktold, K., Resch, M., Florian, H. (1991) Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model. Journal of biomechanical engineering, 113(4): 464-75
Perktold, K., Resch, M., Peter, R.O. (1991) Three-dimensional numerical analysis of pulsatile flow and wall shear stress in the carotid artery bifurcation. Journal of biomechanics, 24(6): 409-20
Samady, H., Eshtehardi, P., McDaniel, M.C., Suo, J., Dhawan, S.S., Maynard, C., Timmins, L.H., Quyyumi, A.A., Giddens, D.P. (2011) Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation, 124(7): 779-88
Shirsat, A., Gupta, S., Shevare, G.R. (1999) Generation of multi-block topology for discretisation of three-dimensional domains. Computers & Graphics, 23(1): 45-57
Slager, C.J., Wentzel, J.J., Gijsen, F.J.H., Schuurbiers, J.C.H., van der Wal, A.C., van der Steen, A.F.W., Serruys, P.W. (2005) The role of shear stress in the generation of rupture-prone vulnerable plaques. Nature clinical practice. Cardiovascular medicine, 2(8): 401-7
Soulis, J.V., Giannoglou, G.D., Chatzizisis, Y.S., Farmakis, T.M., Giannakoulas, G.A., Parcharidis, G.E., Louridas, G.E. (2006) Spatial and phasic oscillation of non-Newtonian wall shear stress in human left coronary artery bifurcation: an insight to atherogenesis. Coronary artery disease, 17(4): 351-8
Soulis, J.V., Farmakis, T.M., Giannoglou, G.D., Louridas, G.E. (2006) Wall shear stress in normal left coronary artery tree. Journal of biomechanics, 39(4): 742-9
Stepanović, Ž., Živković, M., Vulović, S., Aćimović, L., Ristić, B., Matić, A., Grujović, Z. (2011) High, open wedge tibial osteotomy: Finite element analysis of five internal fixation modalities. Vojnosanitetski pregled, vol. 68, br. 10, str. 867-871
Stone, P.H., Coskun, A.U., Kinlay, S., Clark, M.E., Sonka, M., Wahle, A., Ilegbusi, O.J., Yeghiazarians, Y., Popma, J.J., Orav, J., Kuntz, R.E., Feldman, C.L. (2003) Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: in vivo 6-month follow-up study. Circulation, 108(4): 438-44
Stone, P.H., Feldman, C.L. (2011) In vivo assessment of the risk profile of evolving individual coronary plaques: a step closer. Circulation, 124(7): 763-5
Torii, R., Oshima, M., Kobayashi, T., Takagi, K., Tezduyar, T.E. (2006) Computer modeling of cardiovascular fluid–structure interactions with the deforming-spatial-domain/stabilized space–time formulation. Computer Methods in Applied Mechanics and Engineering, 195(13-16): 1885-1895
Weydahl, E.S., Moore, J.E. (2001) Dynamic curvature strongly affects wall shear rates in a coronary artery bifurcation model. Journal of biomechanics, 34(9): 1189-96
Younis, H.F., Kaazempur-Mofrad, M.R., Chan, R.C., Isasi, A.G., Hinton, D.P., Chau, A.H., Kim, L.A., Kamm, R.D. (2004) Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation. Biomechanics and modeling in mechanobiology, 3(1): 17-32
Zarins, C.K., Giddens, D.P., Bharadvaj, B.K., Sottiurai, V.S., Mabon, R.F., Glagov, S. (1983) Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circulation research, 53(4): 502-14
Zhang, Y., Bajaj, C. (2006) Adaptive and quality quadrilateral/hexahedral meshing from volumetric data. Computer Methods in Applied Mechanics and Engineering, 195(9-12): 942-960
Zhao, S.Z., Ariff, B., Long, Q., Hughes, A.D., Thom, S.A., Stanton, A.V., Xu, X.Y. (2002) Inter-individual variations in wall shear stress and mechanical stress distributions at the carotid artery bifurcation of healthy humans. Journal of biomechanics, 35(10): 1367-77
Živković, M. (2004) Department for applied mechanics and automatic control. Kragujevac: Faculty of Engineering, University of Kragujevac