Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:5
  • preuzimanja u poslednjih 30 dana:5

Sadržaj

članak: 1 od 41  
Back povratak na rezultate
2022, vol. 17, br. 1, str. 207-218
Donošenje odluka koje odražavaju fraktalizaciju društva
The Czech Academy of Sciences, Institute of Computer Science, Prague, Czech Republic + Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic

e-adresakalina@cs.cas.cz
Projekat:
The work was supported by the project GA21-19311S ("Information Flow and Equilibrium in Financial Markets") of the Czech Science Foundation.

Ključne reči: podrška odlučivanju; ekonomska ravnoteža; menadžment; kreditni rizik; teorija informacija; teorija haosa
Sažetak
Iako se glavna ekonomska doktrina oslanja na koncept ravnoteže, sadašnje društvo se u poslednje vreme suočava sa ozbiljnim izazovima. Iako možemo doživeti postepeni uspon ideala društva znanja, smatramo da će društvo (i ekonomije širom sveta) imati fraktalnu strukturu prema modelima koje istražuje teorija haosa. Ovaj rad je fokusiran na donošenje odluka posebno u ekonomskim, ili menadžerskim zadacima i njihovim transformacijama usled promene paradigme ka fraktalnom društvu u neravnotežnim ekonomskim uslovima. Razmatrani su statistički i informaciono-teorijski aspekti podrške odlučivanju i analiziran je i prikazan primer donošenja odluka iz oblasti upravljanja kreditnim rizikom.
Reference
Arrow, K.J., Debreu, G. (1954) Existence of an Equilibrium for a Competitive Economy. Econometrica, 22: 265-290
Biais, B., Foucault, T., Moinas, S. (2015) Equilibrium Fast Trading. Journal of Financial Economics, 116: 292-313
Briggs, J. (2015) Fractals: The Patterns of Chaos. Discovering a New Aesthetic of Art, Science, and Nature. Brattleboro: Echo Point Book & Media
Brownstein, N.C., Louis, T.A., O'hagan, A., Pendergast, J. (2019) The Role of Expert Judgment in Statistical Inference and Evidence-Based Decision-Making. American Statistician, 73: 56-68
Chen, F., Tian, K., Ding, X., Li, T., Miao, Y., Lu, C. (2017) Multifractal Characteristics in Maritime Economics Volatility. International Journal of Transport Economics, 44: 365-380
Cialowicz, B. (2017) Demand Sphere as a Co-Engine of Sustainable Development. European Journal of Sustainable Development, 6(4): 465-474
Dimson, E., Marsh, P., Staunton, M. (2017) Factor-Based Investing: The Long-Term Evidence. Journal of Portfolio Management, 43(5): 15-37
Dua, D., Graff, C. (2017) UCI Machine Learning Repository. available at [http://archive.ics.uci.edu/ml]
Düppe, T., Weintraub, E.R. (2016) Losing Equilibrium: On the Existence of Abraham Wald's Fixed-Point Proof of 1935. History of Political Economy, 48: 635-655
Faggini, M., Bruno, B., Parziale, A. (2019) Does Chaos Matter in Financial Time Series Analysis?. International Journal of Economics and Financial Issues, 9(4): 18-24
Harrell, F.E. (2015) Regression Modeling Strategies with Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis. Cham: Springer, 2nd end
Holt, C.A., Roth, A.E. (2004) The Nash Equilibrium: A Perspective. Proceedings of the National Academy of Sciences, 101: 3999-4002
Ignatius, J., Hatami-Marbini, A., Rahman, A., Dhamotharan, L., Khoshnevis, P. (2018) A Fuzzy Decision Support System for Credit Scoring. Neural Computing and Applications, 29: 921-937
Kahneman, D. (2011) Thinking, Fast and Slow. New York: Farrar, Straus and Giroux
Kalina, J., Tichavský, J. (2020) On Robust Estimation of Error Variance in (Highly) Robust Regression. Measurement Science Review, 20: 6-14
Kalina, J., Vašaničová, P., Litavcová, E. (2019) Regression Quantiles Under Heteroscedasticity and Multicollinearity: Analysis of Travel and Tourism Competitiveness. Ekonomický časopis / Journal of Economics, 67: 69-85
Kalina, J., Vidnerová, P. (2020) Regression Neural Networks with a Highly Robust Loss Function. u: Maciak M.; et al. [ur.] Analytical Methods in Statistics, Springer Proceedings in Mathematics & Statistics, 329: 17-29
Kalina, J., Zvárová, J. (2013) Decision Support Systems in the Process of Improving Patient Safety. u: Moumtzoglou A.; Kastania A. [ur.] E-Health Technologies and Improving Patient Safety: Exploring Organizational Factors, Hershey: IGI Global, 71-83
Kalina, J., Duintjer, T.J. (2015) Algorithms for Regularized Linear Discriminant Analysis. u: Proceedings of the 6th International Conference on Bioinformatic Models, Methods and Algorithms (Bioinformatics '15), Lisbon: Scitepress, 128-133
Kalina, J., Schlenker, A. (2015) A Robust Supervised Variable Selection for Noisy High-Dimensional Data. BioMed Research International, 2015: 320385
Kalina, J. (2015) Three Contributions to Robust Regression Diagnostics. Journal of Applied Mathematics, Statistics and Informatics, 11(2): 69-78
Kalina, J. (2017) High-dimensional data in economics and their (robust) analysis. Serbian Journal of Management, vol. 12, br. 1, str. 157-169
Kalina, J. (2013) Highly robust methods in data mining. Serbian Journal of Management, vol. 8, br. 1, str. 9-24
Kalina, J. (2014) On robust information extraction from high-dimensional data. Serbian Journal of Management, vol. 9, br. 1, str. 131-144
Klioutchnikov, I., Sigova, M., Beizerov, N. (2017) Chaos Theory in Finance. Procedia Computer Science, 119: 368-375
Lahmiri, S., Bekiros, S. (2020) Big Data Analytics Using Multi-Fractal Wavelet Leaders in High-Frequency Bitcoin Markets. Chaos, Solitons & Fractals, 131: 109472
Liu, Z., Ye, Y., Ma, F., Liu, J. (2017) Can Economic Policy Uncertainty Help to Forecast the Volatility: A Multifractal Perspective. Physica A, 482: 181-188
Luo, C. (2020) A Comprehensive Decision Support Approach for Credit Scoring. Industrial Management & Data Systems, 120: 280-290
Móczár, J. (2020) The Arrrow-Debreu Model of General Equilibrium and Kornai's Critique in the Light of Neoclassical Economics. Journal of Banking, Finance and Sustainable Development, 1, in press
Moreno-Jiménez, J.M., Vargas, L.G. (2018) Cognitive Multiple Criteria Decision Making and the Legacy of the Analytic Hierarchy Process. Estudios de Economía Aplicada, 36: 67-80
Outrata, J.V., Ferris, M.C., Červinka, M., Outrata, M. (2016) On Cournot-NashWalras equilibria and their computation. Setvalued and Variational Analysis, 24: 387-402
Redko, V.G., Sokhova, Z.B. (2017) Processes of Self-Organization in the Community of Investors and Producers. Studies in Computational Intelligence, 736: 163-169
Samuelson, L. (2016) Game Theory in Economics and Beyond. Journal of Economic Perspectives, 30(4): 107-130
Sandubete, J.E., Escot, L. (2021) DChaos: Chaotic Time Series Analysis. R package version 0.1-6 [https://CRAN.Rproject.org/package=DChaos]
Silva, S.T., Mota, I., Grilo, F. (2013) The Use of Game Theory in Regional Economics: A Quantitative Retrospective. Papers in Regional Science, 94: 421-441
Tetlock, P.E., Gardner, D. (2015) Superforecasting: The Art and Science of Prediction. New York: Crown Publishers
Večeř, J. (2019) Dynamic Scoring: Probabilistic Model Selection Based on Utility Maximization. Entropy, 21(1): 36-36
von Heusinger, A., Kanzow, C., Fukushima, M. (2012) Newton's Method for Computing a Normalized Equilibrium in the Generalized Nash Game Through Fixed Point Formulation. Mathematical Programming, 132: 99-123
Wakode, S. (2020) Efficacious Scrutinizing of COVID-19 Impact on Banking Using Credit Risk Metrics. International Journal of Finance & Economics, 6(3): 51-56
Witzany, J. (2017) Credit Risk Management: Pricing, Measurement, and Modeling. Cham: Springer
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/sjm17-31413
primljen: 19.03.2021.
prihvaćen: 01.03.2022.
objavljen u SCIndeksu: 15.04.2022.
metod recenzije: dvostruko anoniman
Creative Commons License 4.0

Povezani članci