Article metrics

  • citations in SCindeks: 0
  • citations in CrossRef:0
  • citations in Google Scholar:[=>]
  • visits in previous 30 days:2
  • full-text downloads in 30 days:1
article: 4 from 31  
Back back to result list
Srpski arhiv za celokupno lekarstvo
2017, vol. 145, iss. 11-12, pp. 646-651
article language: English
document type: Review Paper
published on: 09/03/2018
doi: 10.2298/SARH170321147T
The impact of currently used oral antihyperglycemic drugs on dysfunctional adipose tissue
aClinical Center of Vojvodina, Clinic for Endocrinology, Diabetes and Metabolic Disorders, Novi Sad + University of Novi Sad, Faculty of Medicine
bClinical Center of Vojvodina, Clinic for Endocrinology, Diabetes and Metabolic Disorders, Novi Sad
cUniversity of Novi Sad, Faculty of Medicine

e-mail: dragana.tomic-naglic@mf.uns.ac.rs

Abstract

Obesity is a disease with pandemic frequency, often accompanied by chronic metabolic and organic complications. Type 2 diabetes mellitus (T2DM) is among the most common metabolic complications of obesity. The first step in the treatment of T2DM is medical nutrition therapy combined with moderate physical activity and with advice to patients to reduce their body weight. Pharmacotherapy starts with metformin, and in the case of inadequate therapeutic response, another antihyperglycemic agent should be added. The most clinical experience exists with sulfonylurea agents, but their use is limited due to high incidence of hypoglycemia and increase in body weight. Based on the fact that dysfunction of adipose tissue can lead to the development of chronic degenerative complications, precise use of drugs with a favorable effect on the functionality of adipose tissue represents an imperative of modern T2DM treatment. Antihyperglycemic drugs of choice in obese individuals are those which cause maturation of adipocytes, improvement of secretion of protective adipokines, and redistribution of fat mass from visceral to subcutaneous depots. Oral antihyperglycemic agents that can affect the functionality of adipose tissue are metformin, SGLT-2 inhibitors, DPP-4 inhibitors, and thiazolidinediones.

Keywords

References

Aronoff, S.L. (2017) Rationale for treatment options for mealtime glucose control in patients with type 2 diabetes. Postgraduate Medicine, 129(2): 231-241
Brunetti, L., Desantis, E.H. (2015) Patient tolerance and acceptance of colesevelam hydrochloride: focus on type 2 diabetes mellitus. Pharmacy and Therapeutics, 40(1): 62-7
Cadegiani, F.A., Silva, O.S. (2016) Acarbose promotes remission of both early and late dumping syndromes in post-bariatric patients. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, Volume 9: 443-446
Chae, Y., Kim, T., Kim, M., Shin, C., Jung, I., Sohn, Y.S., Son, M. (2015) Beneficial Effects of Evogliptin, a Novel Dipeptidyl Peptidase 4 Inhibitor, on Adiposity with Increased Ppargc1a in White Adipose Tissue in Obese Mice. PLoS One, 10(12): e0144064
Chen, J., Sang, Z., Li, L., He, L., Ma, L. (2017) Discovery of 5-methyl-2-(4-((4-(methylsulfonyl)benzyl)oxy)phenyl)-4-(piperazin-1-yl)pyrimidine derivatives as novel GRP119 agonists for the treatment of diabetes and obesity. Molecular Diversity, 21(3): 637-654
Fujita, K., Iwama, H., Oura, K., Tadokoro, T., Hirose, K., Watanabe, M., Sakamoto, T., Katsura, A., Mimura, S., Nomura, T., Tani, J., Miyoshi, H., Morishita, A., Yoneyama, H., Okano, K., Suzuki, Y. (2016) Metformin-suppressed differentiation of human visceral preadipocytes: Involvement of microRNAs. International Journal of Molecular Medicine, 38(4): 1135-1140
Hammarstedt, A., Rotter, S.V., Gogg, S., Jansson, P.-A., Smith, U. (2005) Improved insulin sensitivity and adipose tissue dysregulation after short-term treatment with pioglitazone in non-diabetic, insulin-resistant subjects. Diabetologia, 48(1): 96-104
Han, S., Hagan, D. L., Taylor, J. R., Xin, L., Meng, W., Biller, S. A., Wetterau, J. R., Washburn, W. N., Whaley, J. M. (2008) Dapagliflozin, a Selective SGLT2 Inhibitor, Improves Glucose Homeostasis in Normal and Diabetic Rats. Diabetes, 57(6): 1723-1729
Hayashi, T., Fukui, T., Nakanishi, N., Yamamoto, S., Tomoyasu, M., Osamura, A., i dr. (2017) Dapagliflozin decreases small dense low-density lipoprotein-cholesterol and increases high-density lipoprotein 2-cholesterol in patients with type 2 diabetes: comparison with sitagliptin. Cardiovasc Diabetol, 16(1): 8
Inzucchi, S.E., Bergenstal, R.M., Buse, J.B., Diamant, M., Ferrannini, E., Nauck, M., Peters, A.L., Tsapas, A., Wender, R., Matthews, D.R. (2015) Management of Hyperglycemia in Type 2 Diabetes, 2015: A Patient-Centered Approach: Update to a Position Statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care, 38(1): 140-149
Koska, J., Lopez, L., d`Souza Karen,, Osredkar, T., Deer, J., Kurtz, J., Salbe, A.D., Harman, S.M., Reaven, P.D. (2017) Effect of liraglutide on dietary lipid-induced insulin resistance in humans. Diabetes, Obesity and Metabolism, 20(1): 69-76
Kusaka, H., Koibuchi, N., Hasegawa, Y., Ogawa, H., Kim-Mitsuyama, S. (2016) Empagliflozin lessened cardiac injury and reduced visceral adipocyte hypertrophy in prediabetic rats with metabolic syndrome. Cardiovascular Diabetology, 15(1):
Lindström, J., Ilanne-Parikka, P., Peltonen, M., Aunola, S., Eriksson, J.G., Hemiö, K., Hämäläinen, H., Härkönen, P., Keinänen-Kiukaanniemi, S., Laakso, M., Louheranta, A., Mannelin, M., Paturi, M., Sundvall, J. (2006) Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study. Lancet, 368(9548): 1673-1679
Lundkvist, P., Sjöström, C. D., Amini, S., Pereira, M.J., Johnsson, E., Eriksson, J.W. (2016) Dapagliflozin once-daily and exenatide once-weekly dual therapy: A 24-week randomized, placebo-controlled, phase II study examining effects on body weight and prediabetes in obese adults without diabetes. Diabetes, Obesity and Metabolism, 19(1): 49-60
Majdi, M.A., Mohammadzadeh, N.A., Lotfi, H., Mahmoudi, R., Alipour, F.G., Shool, F., Moghanloo, M.N., Porfaraj, S., Zarghami, N. (2017) Correlation of Resistin Serum Level with Fat Mass and Obesity-Associated Gene (FTO) rs9939609 Polymorphism in Obese Women with Type 2 Diabetes. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 11: S715-S720
Marathe, P.H., Gao, H.X., Close, K.L. (2017) American Diabetes Association Standards of Medical Care in Diabetes 2017. Journal of Diabetes, 9(4): 320-324
Pastel, E., Joshi, S., Knight, B., Liversedge, N., Ward, R., Kos, K. (2016) Effects of Exendin-4 on human adipose tissue inflammation and ECM remodelling. Nutrition & Diabetes, 6(12): e235-e235
Popovic, D.S., Stokic, E., Mitrovic, M., Tomic-Naglic, D., Pejin, R., Icin, T., Vukovic, B., Zivanovic, Z., Pejakovic, S., Kovacev-Zavisic, B. (2017) Surrogates of Insulin Sensitivity and Indices of Cardiometabolic Profile in Obesity. Current Vascular Pharmacology, 15(4):380-9
Popovic, D.S., Mitrovic, M., Tomic-Naglic, D., Icin, T., Bajkin, I., Vukovic, B., Benc, D., Zivanovic, Z., Kovacev-Zavisic, B., Stokic, E. (2017) The Wnt/Β-catenin Signalling Pathway Inhibitor Sclerostin is a Biomarker for Early Atherosclerosis in Obesity. Current Neurovascular Research, 14(3):200-6
Popovic, D.S., Tomic-Naglic, D., Stokic, E. (2014) Relation of resistin, leptin and adiponectin - Trinity of adipose tissue dysfunction assessment. European Journal of Internal Medicine, 25(6): e80-e81
Ren, R., Chen, Z., Zhao, X., Sun, T., Zhang, Y., Chen, J., Lu, S., Ma, W. (2016) A possible regulatory link between Twist 1 and PPARγ gene regulation in 3T3-L1 adipocytes. Lipids in Health and Disease, 15(1): 189
Röhrborn, D., Brückner, J., Sell, H., Eckel, J. (2016) Reduced DPP4 activity improves insulin signaling in primary human adipocytes. Biochemical and Biophysical Research Communications, 471(3): 348-354
Sanlioglu, A.D., Altunbas, H.A., Balci, M.K., Griffith, T.S., Sanlioglu, S. (2013) Clinical utility of insulin and insulin analogs. Islets, 5(2): 67-78
Shivaprasad, C., Kalra, S. (2011) Bromocriptine in type 2 diabetes mellitus. Indian Journal of Endocrinology and Metabolism, 15(5): 17
Srdić, B., Stokić, E.J., Korać, A.B., Ukropina, M., Vellčković, K., Breberina, M.B. (2010) Morphological characteristics of abdominal adipose tissue in normal-weight and obese women of different metabolic profiles. Exp Clin Endocrinol Diabetes, vol. 118, br. 10, str. 713-718
Stokić, E., Tomić-Naglić, D., Đerić, M., jorga J. (2009) Therapeutic options for treatment of cardiometabolic risk. Med Pregl, 62: 54-8
Stokić, E., Kupusinac, A., Tomic-Naglic, D., Smiljenic, D., Kovacev-Zavisic, B., Srdic-Galic, B., Soskic, S., Isenovic, E.R. (2015) Vitamin D and Dysfunctional Adipose Tissue in Obesity. Angiology, 66(7): 613-618
Stokić, E., Kupusinac, A., Tomić-Naglić, D., Zavišić, B.K., Mitrović, M., Smiljenić, D., Soskić, S., Isenović, E. (2015) Obesity and Vitamin D Deficiency. Angiology, 66(3): 237-243
Tan, B. K., Chen, J., Farhatullah, S., Adya, R., Kaur, J., Heutling, D., Lewandowski, K. C., o`Hare J. P., Lehnert, H., Randeva, H. S. (2009) Insulin and Metformin Regulate Circulating and Adipose Tissue Chemerin. Diabetes, 58(9): 1971-1977
Tomic-Naglic, D., Popovic, D.S., Mitrovic, M., Novakovic-Paro, J., Srdic-Galic, B., Ruzic, M., i dr. (2015) Ferritin and cardiovascular risk in obese persons. Int J Med Biomed Sci., 3: 12-7
Tomić-Naglić, D., Stokić, E., Srdić, B., Radovanov, T. (2008) Masno tkivo kao endokrina žlezda. Medicina danas, vol. 7, br. 4-6, str. 142-147
Virtanen, K. A., Hallsten, K., Parkkola, R., Janatuinen, T., Lonnqvist, F., Viljanen, T., Ronnemaa, T., Knuuti, J., Huupponen, R., Lonnroth, P., Nuutila, P. (2003) Differential Effects of Rosiglitazone and Metformin on Adipose Tissue Distribution and Glucose Uptake in Type 2 Diabetic Subjects. Diabetes, 52(2): 283-290
Zinman, B., Wanner, C., Lachin, J.M., Fitchett, D., Bluhmki, E., Hantel, S., Mattheus, M., Devins, T., Johansen, O.E., Woerle, H.J., Broedl, U.C., Inzucchi, S.E. (2015) Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. New England Journal of Medicine, 373(22): 2117-2128