- citati u SCIndeksu: 0
- citati u CrossRef-u:0
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:2
- preuzimanja u poslednjih 30 dana:1
|
|
2019, vol. 32, br. 1, str. 64-74
|
Algoritamski i konceptualni pristup merenju površine figura
Аlgorithmic and conceptual approach to figure surface measurement
Projekat: Koncepcije i strategije obezbeđivanja kvaliteta bazičnog obrazovanja i vaspitanja (MPNTR - 179020)
Ključne reči: merenje; površina figure; algoritamski i konceptualni pristup
Sažetak
Merenje površine predstavlja važnu temu školskih programa i tesno je povezana sa drugim matematičkim temama i sa realnim okruženjem. Rezultati brojnih međunarodnih studija pokazuju da su postignuća učenika u domenu merenja površine niska, što se povezuje sa algoritamskim pristupom navedenoj temi, a koji karakteriše dominantno naglašavanje proceduralnih veština i primena formula. U radu su razmatrani različiti nivoi i parametri konceptualnog razumevanja merenja površine. Cilj istraživanja jeste ispitivanje nivoa i karaktera znanja o merenju površine kod učenika četvrtog razreda osnovne škole. U istraživanju su korišćene deskriptivna metoda i tehnika testiranja. Test čine standardizovani zadaci (Huang & Witz, 2013) i još dva zadatka koja nisu deo standardizovanog testa i koja su osmišljena na osnovu transkripta intervjua iz navedenog istraživanja. Uzorak je prigodan i čine ga dva odeljenja četvrtog razreda jedne osnovne škole u Beogradu. Osnovni zaključak jeste da su učenici razvili instrumentalno razumevanje postupka merenja površine i da strategije određivanja površine figura svode na primenu formula, zbog čega često greše, birajući pogrešnu formulu. Kao implikaciju istraživanja vidimo isticanje potrebe da se dovoljno vremena posveti aktivnostima konceptualnog pristupa podeli figura i popločavanju koje će premostiti veliki jaz od popločavanja površi i brojanja jedinica mere do razumevanja formula za računanje.
Abstract
Surface measurement is an important topic of the school curricula which is closely related to other mathematical topics and to the real world. The results of numerous international studies show that students' achievements in the area of surface measurement are low, which is explained by the algorithmic approach to the topic characterised by the emphasis on procedural skills and the application of formulas. The paper looks at different levels and parameters of the conceptual understanding of surface measurement.. The aim of the research is to examine the level and quality of knowledge about surface measurements among pupils of the fourth grade of primary school. The descriptive method and testing technique were used in the research. The test consists of standardised tasks (Huang & Witz, 2013) and two more tasks that are not part of the standardised test and that were designed based on the transcript of the interviews from the above study. The convenience sample consisted of two classes of the fourth-grade pupils of a primary school in Belgrade. The key conclusion is that students have developed an instrumental understanding of the surface measurement procedure and that the strategies for determining the surface of the figures reduce the application of the formula, which is why they choose, often mistakenly, the wrong formula. Based on the research findings, we conclude that more time should be devoted to activities involving the conceptual approach to the division of figures and tiling. These activities will bridge the great gap between surface tiling and counting the units of measure and the understanding of calculation formulas.
|
|
|
Reference
|
|
Battista, M., Clements, D., Arnoff, J., Battista, K., van Auken, C.B. (1998) Students' spatial structuring of 2D arrays of squares. Journal for Research in Mathematics Education, 29 (5), 503-532
|
|
Battista, M. (2004) Applying cognition-based assessment to elementary school students' development of understanding of area & volume measurement. Mathematical Thinking & Learning, 6 (2), 185-204
|
|
Battista, M. (2007) The development of geometric and spatial thinking. u: Lester, F. [ur.] Second handbook of research on mathematics teaching & learning, Reston: National Council of Teachers of Mathematics, 843-908
|
|
Battista, M.T., Clements, D.H. (1996) Students' understanding of three-dimensional rectangular arrays of cubes. Journal for Research in Mathematics Education, 27 (3), 258-292
|
|
Clements, D., Stephan, M. (2004) Measurement in pre-K to grade 2 mathematics. u: Clements, D. & Sarama, J. [ur.] Engaging young children in mathematics: Standards for early childhood mathematics education, Mahwah: Lawrence Erlbaum Associates, 299-320
|
4
|
Đokić, O.J. (2014) Realno okruženje u početnoj nastavi geometrije. Inovacije u nastavi - časopis za savremenu nastavu, vol. 27, br. 2, str. 7-21
|
|
Herendine-Konya, E. (2015) The level of understanding geometric measurement. u: Krainer, K. & Vondrová, N. [ur.] Proceedings of the ninth Congress of the European Society for Research in Mathematics Education, Prague: Charles University in Prague, Faculty of Education, 536-542
|
|
Huang, H.M.E. (2017) Curriculum interventions for area measurement instruction to enhance children's conceptual understanding. International Journal of Science and Mathematics Education, 15(7): 1323-1341
|
|
Huang, H.E., Witz, K.G. (2011) Developing children's conceptual understanding of area measurement: A curriculum and teaching experiment. Learning and Instruction, 21(1): 1-13
|
|
Huang, H.E., Witz, K.G. (2013) Children's conceptions of area measurement and their strategies for solving area measurement problems. Journal of Curriculum and Teaching, 2(1): 10-26
|
2
|
Jelić, M.S., Đokić, O.J. (2017) Ka koherentnoj strukturi udžbenika matematike - analiza udžbenika prema strukturnim blokovima TIMSS istraživanja. Inovacije u nastavi - časopis za savremenu nastavu, vol. 30, br. 1, str. 67-81
|
|
Kamii, C., Kysh, J. (2006) The difficulty of 'length×width': Is a square the unit of measurement?. Journal of Mathematical Behavior, 25 (2), 105-115
|
|
Kordaki, M., Balomenou, A. (2006) Challenging students to view the concept of area in triangles in a broad context: Exploiting the features of Cabri-II. International Journal of Computers for Mathematical Learning, 11(1): 99-135
|
|
Kow, K., Yeo, J. (2008) Teaching area & perimeter: Mathematics-pedagogical-content knowledge-in-action. u: Goos, M., Brown, R. & Makar, K. [ur.] Proceedings of the 31st Annual Conference of the Mathematics Education Research Group of Australasia, Brisbane: MERGA, 621-627
|
|
Lin, P.J., Tsai, W.H. (2003) Fourth graders' achievement of mathematics in TIMSS 2003 field test (in Chinese). Science Education Monthly, 258, 2-20
|
|
Martin, W.G., Strutchens, M.E. (2000) Geometry & measurement. u: Silver, E. A. & Kenney, P. A. [ur.] Results from the seventh mathematics assessment of the National Assessment of Educational Progress, Reston, VA: NCTM, 193-234
|
|
Outhred, L.N., Mitchelmore, M.C. (2000) Young children's intuitive understanding of rectangular area measurement. Journal for Research in Mathematics Education, 31(2): 144-167
|
|
Sarama, J., Clements, D. (2009) Early childhood mathematics education research: Learning trajectories for young children. New York: Routledge
|
|
Schifter, D., Bastable, V., Russell, S.J., Woleck, K.R. (2002) Measuring space in one, two & three dimensions: Case book. Parsippany, NJ: Dale Seymour Publication
|
1
|
Stephan, M., Clemens, D.H. (2003) Linear and area measurement in prekindergarten to grade 2. u: Clements D.H., Bright G. [ur.] Learning and Teaching Measurement: 2003 yearbook, Reston, VA: National Council of Teachers of Mathematics, 3-16
|
|
Strutchens, M.E., Harris, K.A., Martin, W.G. (2001) Assessing geometry & measurement: Understanding using manipulatives. Mathematics Teaching in the Middle School, 6(7): 402-405
|
|
Tan, N.J. (1995) The study of the concepts of area measurement (in Chinese). Compulsory Education, 35: 1-21
|
|
Tan, N.J. (1999) A study on the exploration of the elementary teachers' pedagogical content knowledge on the students' misconception in measurement. Journal of National Taipei Teachers College, 12: 407-436
|
|
Usiskin, Z. (2012) What does it mean to understand some mathematics?. Retrieved May 5, 2017 from www: http://www.fisme.science.uu.nl/publicaties/literatuur/panama_cursusboek/pcb_31_11-30_Usiskin.pdf
|
1
|
van de Walle, J.A. (2007) Elementary and middle school mathematics: Teaching developmentally. New York: Pearson Education. Inc, 6th ed
|
|
Zacharos, K. (2006) Prevailing educational practices for area measurement and students' failure in measuring areas. Journal of Mathematical Behavior, 25(3): 224-239
|
|
|
|