Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:10
  • preuzimanja u poslednjih 30 dana:6
članak: 3 od 71  
Back povratak na rezultate
Ratarstvo i povrtarstvo
2018, vol. 55, br. 2, str. 58-64
jezik rada: engleski
vrsta rada: izvorni naučni članak
doi:10.5937/ratpov55-15307

Creative Commons License 4.0
Efekat različitih načina korišćenja zemljišta na mikrobiološka svojstva zemljišta Centralne Srbije
Naučni institut za ratarstvo i povrtarstvo, Novi Sad

e-adresa: jelena.marinkovic@ifvcns.ns.ac.rs

Sažetak

Cilj ovih istraživanja bio je da se ispita uticaj načina korišćenja zemljišta na mikrobiološka svojstva. Istraživanja su sprovedena u pet oblasti na teritoriji centralne Srbije. Analizirana su 42 uzorka zemljišta pod sertifikovanom organskom proizvodnjom, 8 uzoraka zemljišta u konvencionalnoj poljoprivrednoj proizvodnji i 30 uzoraka napuštenog zemljišta. Brojnost mikroorganizama određena je indirektnom metodom, zasejavanjem suspenzije zemljišta odgovarajućeg razređenja na selektivne hranljive podloge, dok je aktivnost enzima dehidrogenaze određena spektrofotometrijski. Na raznovrsnost, brojnost i aktivnost mikroorganizama na ispitivanim parcelama prvenstveno je uticala pH reakcija zemljišta. Kisela pH reakcija na većini ispitivanih lokaliteta uslovila je intenzivniji razvoj gljiva i manje prisustvo aktinomiceta i Azotobacter sp. Ukupan broj mikroorganizama, brojnost amonifikatora i gljiva nije se značajno menjao u zavisnosti od načina korišćenja parcele. Značajno viša prosečna aktivnost dehidrogenaze zabeležena je u napuštenim zemljištima i zemljištima u organskom sistemu gajenja u poređenju sa zemljištima u konvencionalnoj proizvodnji.

Ključne reči

Reference

Aciego, P.J.C., Brookes, P.C. (2009) Substrate inputs and pH as factors controlling microbial biomass, activity and community structure in an arable soil. Soil Biology and Biochemistry, 41(7): 1396-1405
Araújo, A., Leite, L., Santos, V., Carneiro, R. (2009) Soil Microbial Activity in Conventional and Organic Agricultural Systems. Sustainability, 1(2): 268-276
Barnes, R.J., Baxter, S.J., Lark, R.M. (2007) Spatial covariation of Azotobacter abundance and soil properties: A case study using the wavelet transform. Soil Biology and Biochemistry, 39(1): 295-310
Bhatia, R., Ruppel, S., Narula, N. (2008) Diversity studies of Azotobacter spp. from cotton-wheat cropping systems of India. Journal of Basic Microbiology, 48(6): 455-463
Brzezinska, M., St^pniewski, W., St^pniewska, Z., Przywara, G. (2001) Effect of oxygen deficiency on soil dehydrogenase activity in a pot experiment with triticale CV. Jago vegetation. International Agophysics, 15, 145-149
Casida, L. E., Klein, D. A., Santoro, T. (1964) Soil dehydrogenase activity. Soil Science, 98(6): 371-376
Castañeda, L.E., Godoy, K., Manzano, M., Marquet, P.A., Barbosa, O. (2015) Comparison of soil microbial communities inhabiting vineyards and native sclerophyllous forests in central Chile. Ecology and Evolution, 5(18): 3857-3868
Cavigelli, M.A., Mirsky, S.B., Teasdale, J.R., Spargo, J.T., Doran, J. (2013) Organic grain cropping systems to enhance ecosystem services. Renewable Agriculture and Food Systems, 28(02): 145-159
Chen, G., Zhu, H., Zhang, Y. (2003) Soil microbial activities and carbon and nitrogen fixation. Research in Microbiology, 154(6): 393-398
Esperschütz, J., Gattinger, A., Mäder, P., Schloter, M., Fließbach, A. (2007) Response of soil microbial biomass and community structures to conventional and organic farming systems under identical crop rotations. FEMS Microbiology Ecology, 61(1): 26-37
Fernández-Calviño, D., Bååth, E. (2010) Growth response of the bacterial community to pH in soils differing in pH. FEMS Microbiology Ecology, str. no-no
Fernández-Calviño, D., Soler-Rovira, P., Polo, A., Díaz-Raviña, M., Arias-Estévez, M., Plaza, C. (2010) Enzyme activities in vineyard soils long-term treated with copper-based fungicides. Soil Biology and Biochemistry, 42(12): 2119-2127
Fließbach, A., Oberholzer, H., Gunst, L., Mäder, P. (2007) Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agriculture, Ecosystems & Environment, 118(1-4): 273-284
Jangid, K., Williams, M.A., Franzluebbers, A.J., Sanderlin, J.S., Reeves, J.H., Jenkins, M.B., Endale, D.M., Coleman, D.C., Whitman, W.B. (2008) Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biology and Biochemistry, 40(11): 2843-2853
Kizilkaya, R. (2009) Nitrogen fixation capacity of Azotobacter spp. strains isolated from soils in different ecosystems and relationship between them and the microbiological properties of soils. Journal of Environmental Biology, 30 (1); 73-82
Klaus, V.H., Kleinebecker, T., Prati, D., Gossner, M.M., Alt, F., Boch, S., Gockel, S., Hemp, A., Lange, M., Müller, J., Oelmann, Y., Pašalić, E., Renner, S.C., Socher, S.A., Türke, M., Wei (2013) Does organic grassland farming benefit plant and arthropod diversity at the expense of yield and soil fertility?. Agriculture, Ecosystems & Environment, 177: 1-9
Lauber, C. L., Hamady, M., Knight, R., Fierer, N. (2009) Pyrosequencing-Based Assessment of Soil pH as a Predictor of Soil Bacterial Community Structure at the Continental Scale. Applied and Environmental Microbiology, 75(15): 5111-5120
Levyk, V., Maryskevych, O., Brzezinska, M., Wlodarczyk, T. (2007) Dehydrogenase activity of technogenic soils of former sulphur mines (Yvaoriv and Nemyriv, Ukraine). International Agrophysics, 255-260; 21
Li, R., Khafipour, E., Krause, D.O., Entz, M.H., de Kievit, T.R., Fernando, W.G.D. (2012) Pyrosequencing reveals the influence of organic and conventional farming systems on bacterial communities. PLoS One, 7, e51897. https://doi.org/10.1371/journal.pone.0051897
Moeskops, B., Sukristiyonubowo,, Buchan, D., Sleutel, S., Herawaty, L., Husen, E., Saraswati, R., Setyorini, D., de Neve, S. (2010) Soil microbial communities and activities under intensive organic and conventional vegetable farming in West Java, Indonesia. Applied Soil Ecology, 45(2): 112-120
Nannipieri, P., Ascher, J., Ceccherini, M.T., Pietramellara, G.L., Renella, G. (2003) Microbial diversity and soil functions. European Journal of Soil Science, 54(4): 655
Natywa, M., Selwet, M. (2011) Respiratory and dehydrogenase activities in the soils under maize growth in the conditions of irrigated and nonirrigated fields. Agricultura, 93-100; 10
Nazir, R., Boersma, F.G.H., Warmink, J.A., van Elsas, J.D. (2010) Lyophyllum sp. strain Karsten alleviates pH pressure in acid soil and enhances the survival of Variovorax paradoxus HB44 and other bacteria in the mycosphere. Soil Biology and Biochemistry, 42(12): 2146-2152
Nazir, R., Semenov, A.V., Sarigul, N., Elsas, J.D.van (2013) Bacterial community establishment in native and non-native soils and the effect of fungal colonization. Microbiology Discovery, 1(1): 8
Nevarez, L., Vasseur, V., Le, M.A., Le, B.M.A., Coroller, L., Leguérinel, I., Barbier, G. (2009) Physiological traits of Penicillium glabrum strain LCP 08.5568, a filamentous fungus isolated from bottled aromatised mineral water. International Journal of Food Microbiology, 130(3): 166-171
Orr, C.H., James, A., Leifert, C., Cooper, J.M., Cummings, S.P. (2010) Diversity and Activity of Free-Living Nitrogen-Fixing Bacteria and Total Bacteria in Organic and Conventionally Managed Soils. Applied and Environmental Microbiology, 77(3): 911-919
Orr, C.H., Leifert, C., Cummings, S.P., Cooper, J.M. (2012) Impacts of Organic and Conventional Crop Management on Diversity and Activity of Free-Living Nitrogen Fixing Bacteria and Total Bacteria Are Subsidiary to Temporal Effects. PLoS ONE, 7(12): e52891
Pelletier, N., Arsenault, N., Tyedmers, P. (2008) Scenario Modeling Potential Eco-Efficiency Gains from a Transition to Organic Agriculture: Life Cycle Perspectives on Canadian Canola, Corn, Soy, and Wheat Production. Environmental Management, 42(6): 989-1001
Pereira, e S.M.C., Semenov, A.V., van Elsas, J.D., Salles, J.F. (2011) Seasonal variations in the diversity and abundance of diazotrophic communities across soils. FEMS Microbiology Ecology, 77(1): 57-68
Riches, D., Porter, I.J., Oliver, D.P., Bramley, R.G.V., Rawnsley, B., Edwards, J., White, R.E. (2013) Biological indicators for soil quality. Australian Journal of Grape and Wine Research, 311-323; 19
Ros, M. (2003) Soil microbial activity after restoration of a semiarid soil by organic amendments. Soil Biology and Biochemistry, 35(3): 463-469
Rousk, J., Demoling, L.A., Bahr, A., Bååth, E. (2008) Examining the fungal and bacterial niche overlap using selective inhibitors in soil. FEMS Microbiology Ecology, 63(3): 350-358
Rousk, J., Bååth, E., Brookes, P.C., Lauber, C.L., Lozupone, C., Caporaso, J.G., Knight, R., Fierer, N. (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal, 4(10): 1340-1351
Salazar, S., Sánchez, L.E., Alvarez, J., Valverde, A., Galindo, P., Igual, J.M., Peix, A., Santa-Regina, I. (2011) Correlation among soil enzyme activities under different forest system management practices. Ecological Engineering, 37(8): 1123-1131
Schloss, P.D., Handelsman, J. (2006) Toward a Census of Bacteria in Soil. PLoS Computational Biology, 2(7): e92
Sreevidya, M., Gopalakrishnan, S., Kudapa, H., Varshney, R.K. (2016) Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea. Brazilian Journal of Microbiology, 47(1): 85-95
Stagnari, F., Perpetuini, G., Tofalo, R., Campanelli, G., Leteo, F., Vella, D.U., Schirone, M., Suzzi, G., Pisante, M. (2014) Long-term impact of farm management and crops on soil microorganisms assessed by combined DGGE and PLFA analyses. Frontiers in Microbiology, 5, 644. doi: https: //dx. doi. org/10. 3389%2Ffmicb. 2014. 00644
Sugiyama, A., Vivanco, J.M., Jayanty, S.S., Manter, D.K. (2010) Pyrosequencing Assessment of Soil Microbial Communities in Organic and Conventional Potato Farms. Plant Disease, 94(11): 1329-1335
Vasin, J., Milić, S., Zeremski, T., Ninkov, J., Marinković, J., Sekulić, P. (2013) Potena/ali Republike Srbije u pogledu kvaliteta %emljišta %a organsku poljoprivrednu proi%vodnju / Potentials for organic agriculture development in the Republic of Serbia based on soil quality. Novi Sad: Institute of Field and Vegetable Crops
Wang, W., Wang, H., Feng, Y., Wang, L., Xiao, X., Xi, Y., Luo, X., Sun, R., Ye, X., Huang, Y., Zhang, Z., Cui, Z. (2016) Consistent responses of the microbial community structure to organic farming along the middle and lower reaches of the Yangtze River. Scientific Reports, 6(1):
Wolf, D.C., Wagner, G.H. (2005) Carbon transformations and soil organic matter formation. u: Sylvia D.M., Fuhrmann J.J., Hartel P.G., Zuberer D.A. [ur.] Principles and applications of soil microbiology, USA, Upper Saddle River: Pearson Education, Prentice Hall, pp. 285-332
Yuan, B., Yue, D. (2012) Soil Microbial and Enzymatic Activities Across a Chronosequence of Chinese Pine Plantation Development on the Loess Plateau of China. Pedosphere, 22(1): 1-12
Zhang, N., He, X., Gao, Y., Li, Y., Wang, H., Ma, D., Zhang, R., Yang, S. (2010) Pedogenic Carbonate and Soil Dehydrogenase Activity in Response to Soil Organic Matter in Artemisia ordosica Community. Pedosphere, 20(2): 229-235
Zhao, B., Chen, J., Zhang, J., Qin, S. (2010) Soil microbial biomass and activity response to repeated drying-rewetting cycles along a soil fertility gradient modified by long-term fertilization management practices. Geoderma, 160(2): 218-224