Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:4
  • preuzimanja u poslednjih 30 dana:2
članak: 2 od 78  
Back povratak na rezultate
Journal of Mining and Metallurgy B: Metallurgy
2020, vol. 56, br. 1, str. 119-125
jezik rada: engleski
vrsta rada: izvorni naučni članak
objavljeno: 24/02/2020
doi: 10.2298/JMMB190319056Y
Creative Commons License 4.0
Uticaj sadržaja srebra na habanje i mehaničke osobine kod Ti-5Al-2.5Fe-xAg legura dobijenih metalurgijom praha
aKocaeli University, Department of Metallurgical and Materials Engineering, Izmit, Turkey
bDe Montfort University, School of Engineering and Sustainable Development, Leichester, United Kingdom
cUniversity of Sciences and Technology Houari Boumediene, Laboratory of Science and Materials Engineering, Algeria

e-adresa: ryamanoglu@gmail.com

Projekat

This study was supported by Scientific Research Unit of Kocaeli University, Turkey (Grant No: 2018/158). This study was also funded by De Montfort University in the United Kingdom as part of internal Further Funding VC2020 scheme

Sažetak

U ovom radu je ispitivan uticaj srebra na mehaničke osobine Ti5Al2.5Fe legure. Legura Ti5Al2.5Fe sa različitim sadržajima srebra, od 1 do 5 wt. %, dobijena je mehaničkim mešanjem, a zatim je podvrgnuta vrućem presovanju na temperaturi od 950 oC, u periodu od 15 minuta i pod pritiskom od 50 MPa. Praškasto telo dobijeno kompresijom je podvrgnuto tri puta postupku fiksiranja da bi se potisnula tečna faza unutar grafitnog kalupa pre nego što se postigne maksimalna temperatura sinterovanja. Sinterovani uzorci su podvrgnuti testovima za ispitivanje čvrstoće, savijanja i habanja da bi se ispitao uticaj srebra na mehaničke osobine Ti5Al2.5Fe legure. Optičkim i skenirajućim elektronskim mikroskopom je urađena mikrostrukturna karakterizacija. Rezultati su pokazali da Ag ima diferencijalnu ulogu kada su u pitanju mehaničke osobine podržane mikrostrukturnim komponentama. Čvrstoća na savijanje i tvrdoća dobijenih uzoraka se povećala kada se dodalo srebro, a zatim se tvrdoća legure smanjila prilikom povećanja sadržaja Ag, ali je i dalje bila veća od tvrdoće Ti5Al2.5Fe legure. Test habanja je takođe pokazao slične rezultate kao i test tvrdoće. Na kraju se došlo do zaključka da optimalni sadržaj Ag za Ti5Al2.5Fe leguru iznosi 1 wt.%. XRD analiza je pokazala da je nerastvoreni sadržaj Ag glavni uzrok smanjenja mehaničkih osobina.

Ključne reči

Reference

Bahador, A., Kariya, S., Umeda, J., Hamzah, E., Kondoh, K. (2019) Tailoring microstructure and properties of a superelastic Ti-Ta alloy by incorporating spark plasma sintering with thermomechanical processing. Journal of Materials Engineering and Performance, 28(5): 3012-3020
Bahador, A., Hamzah, E., Kondoh, K., Abu, B.T.A., Yusof, F., Imai, H., Saud, S.N., Ibrahim, M.K. (2017) Effect of deformation on the microstructure, transformation temperature and superelasticity of Ti-23 at% Nb shape-memory alloys. Materials & Design, 118: 152-162
Chen, G., Cao, P., He, Y., Shen, P., Gao, H. (2012) Effect of aluminium evaporation loss on pore characteristics of porous FeAl alloys produced by vacuum sintering. Journal of Materials Science, 47(3): 1244-1250
Chen, M., Zhang, E., Zhang, L. (2016) Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys. Materials Science and Engineering: C, 62: 350-360
Daoush, W.M.R.M., Park, H.S., Inam, F., Lim, B.K., Hong, S.H. (2015) Microstructural and mechanical characterization of Ti-12Mo-6Zr biomaterials fabricated by spark plasma sintering. Metallurgical and Materials Transactions A, 46(3): 1385-1393
Iijima, D., Yoneyama, T., Doi, H., Hamanaka, H., Kurosaki, N. (2003) Wear properties of Ti and Ti-6Al-7Nb castings for dental prostheses. Biomaterials, 24(8): 1519-1524
Jia, M.T., Gabbitas, B., Bolzoni, L. (2018) Evaluation of reactive induction sintering as a manufacturing route for blended elemental Ti-5Al-2.5Fe alloy. Journal of Materials Processing Technology, 255: 611-620
Jiao, X., Wang, X., Feng, P., Liu, Y., Zhang, L., Akhtar, F. (2018) Microstructure evolution and pore formation mechanism of porous TiAl3 intermetallics via reactive sintering. Acta Metallurgica Sinica (English Letters), 31(4): 440-448
Kang, M.K., Moon, S.K., Kwon, J.S., Kim, K.M., Kim, K.M. (2012) Antibacterial effect of sand blasted, large-grit, acid-etched treated Ti-Ag alloys. Materials Research Bulletin, 47(10): 2952-2955
Kikuchi, M., Takahashi, M., Okuno, O. (2006) Elastic moduli of cast Ti-Au, Ti-Ag, and Ti-Cu alloys. Dental Materials, 22(7): 641-646
Kikuchi, M., Takada, Y., Kiyosue, S., Yoda, M., Woldu, M., Cai, Z., Okuno, O., Okabe, T. (2003) Mechanical properties and microstructures of cast Ti-Cu alloys. Dental Materials, 19(3): 174-181
Lee, J.H., Kwon, J.S., Moon, S.K., Uhm, S.H., Choi, B.H., Joo, U.H., Kim, K.M., Kim, K.M. (2016) Titanium-silver alloy miniplates for mandibular fixation: In vitro and in vivo study. Journal of Oral and Maxillofacial Surgery, 74(8): 1622.e1-1622.e12
Lee, T., Mathew, E., Rajaraman, S., Manivasagam, G., Singh, A.K., Lee, C.S. (2015) Int. J. Nanomed, 10(1): 207-212
Lee, Y.S., Niinomi, M., Nakai, M., Narita, K., Cho, K. (2015) Predominant factor determining wear properties of b-type and (a+b)-type titanium alloys in metal-to-metal contact for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 41: 208-220
Luangvaranunt, T., Pripanapong, P. (2012) Pin-on-disc wear of precipitation hardened titanium-copper alloys fabricated by powder metallurgy. Materials Transactions, 53(3): 518-523
Magaacibhi, C., Alistar, J.N., Radhika, N. (2018) Mater. Today:. Proc, 5: 12681-12692
Mei, S., Wang, H., Wang, W., Tong, L., Pan, H., Ruan, C., Ma, Q., Liu, M., Yang, H., Zhang, L., Cheng, Y., Zhang, Y., Zhao, L., Chu, P.K. (2014) Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes. Biomaterials, 35(14): 4255-4265
Ohkubo, C., Shimura, I., Aoki, T. (2003) Wear resistance of experimental Ti-Cu alloys. Biomaterials, 24(20): 3377-3381
Sampaio, M., Buciumeanu, M., Henriques, B., Silva, F.S., Souza, J.C.M., Gomes, J.R. (2016) Comparison between PEEK and Ti6Al4V concerning micro-scale abrasion wear on dental applications. Journal of the Mechanical Behavior of Biomedical Materials, 60: 212-219
Seward, G.G.E., Celotto, S., Prior, D.J., Wheeler, J., Pond, R.C. (2004) In situ SEM-EBSD observations of the hcp to bcc phase transformation in commercially pure titanium. Acta Materialia, 52(4): 821-832
Sha, W., Malinov, S. (2009) Titanium alloys: Modelling of microstructure, properties and applications. Washington: CRC Press, 1-1
Shi, X., Zeng, W., Zhao, Q. (2015) Mater. Sci. Eng. A, 636 A: 543-550
Szaraniec, B., Goryczka, T. (2017) Structure and properties of Ti-Ag alloys produced by powder metallurgy. Journal of Alloys and Compounds, 709: 464-472
Takahashi, M., Kikuchi, M., Takada, Y. (2015) Mechanical properties of dental Ti-Ag alloys with 22.5, 25, 27.5, and 30 mass% Ag. Dental Materials Journal, 34(4): 503-507
Vrancken, B., Thijs, L., Kruth, J.-.P.P., van Humbeeck, J. (2014) Microstructure and mechanical properties of a novel b titanium metallic composite by selective laser melting. Acta Materialia, 68: 150-158
Wang, S., Ma, Z., Liao, Z., Song, J., Yang, K., Liu, W. (2015) Study on improved tribological properties by alloying copper to CP-Ti and Ti-6Al-4V alloy. Materials Science and Engineering: C, 57: 123-132
Wen, M., Wen, C., Hodgson, P., Li, Y. (2014) Fabrication of Ti-Nb-Ag alloy via powder metallurgy for biomedical applications. Materials & Design, 56: 629-634
Xiao, D.H., Yuan, T.C., Ou, X.Q., He, Y.H. (2011) Microstructure and mechanical properties of powder metallurgy Ti-Al-Mo-V-Ag alloy. Transactions of Nonferrous Metals Society of China, 21(6): 1269-1276
Yamanoglu, R., German, R.M., Karagoz, S., Bradbury, W.L., Zeren, M., Li, W., Olevsky, E.A. (2011) Microstructural investigation of as cast and PREP atomised Ti-6Al-4V alloy. Powder Metallurgy, 54(5): 604-607
Yamanoglu, R. (2014) Production and characterization of Al-xNi in situ composites using hot pressing. Journal of Mining and Metallurgy B: Metallurgy, vol. 50, br. 1, str. 45-52
Yamanoglu, R., Efendi, E., Kolayli, F., Uzuner, H., Daoud, I. (2018) Production and mechanical properties of Ti-5Al-2.5Fe-xCu alloys for biomedical applications. Biomedical Materials, 13(2): 025013-025013
Yang, X., Hutchinson, C.R. (2016) Corrosion-wear of b-Ti alloy TMZF (Ti-12Mo-6Zr-2Fe) in simulated body fluid. Acta Biomaterialia, 42: 429-439
Yu, C., Cao, P., Jones, M. (2017) Microstructural evolution during pressureless sintering of blended elemental Ti-Al-V-Fe titanium alloys from fine hydrogenated-dehydrogenated titanium powder. Metals, 7(8): 285-285
Zhang, B.B., Wang, B.L., Li, L., Zheng, Y.F. (2011) Corrosion behavior of Ti-5Ag alloy with and without thermal oxidation in artificial saliva solution. Dental Materials, 27(3): 214-220
Zhang, E., Li, F., Wang, H., Liu, J., Wang, C., Li, M., Yang, K. (2013) A new antibacterial titanium-copper sintered alloy: Preparation and antibacterial property. Materials Science and Engineering: C, 33(7): 4280-4287