Metrika članka

  • citati u SCindeksu: [1]
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:3
  • preuzimanja u poslednjih 30 dana:1
članak: 6 od 72  
Back povratak na rezultate
Journal of Mining and Metallurgy B: Metallurgy
2018, vol. 54, br. 1, str. 39-50
jezik rada: engleski
vrsta rada: neklasifikovan
doi:10.2298/JMMB170215048P

Creative Commons License 4.0
Eksperimentalno ispitivanje karbotermičke redukcije MgO na niskom pritisku uz korišćenje koncentrovane solarne energije
PROMES-CNRS Laboratory, Font-Romeu, France

e-adresa: jean.puig@promes.cnrs.fr

Projekat

Project by the PSA Peugeot-Citroën group and by the Programme: Investissements d'Avenir (Investment for the Future) of the Agence Nationale de la Recherche (National Agency for Research) of the French State under award number ANR- 10- LABX-22 -01-SOLSTICE

Sažetak

Usavršeni solarni reaktor Sol@rmet omogućava da se istraži redukcija MgO u prisustvu ugljenika korišćenjem koncentrovane solarne energije u uslovima niskog vakuuma, oko 900 Pa. Analiziran je uticaj vrste ugljenika, i pokazalo se da je ugljenik iz biomase odličan kandidat. Postepeno povećanje temperature tokom eksperimenta omogućilo je dobijanje obećavajućih rezultata. Dobijeni su prahovi sa visokim sadržajem Mg do 97 m%, i sa visokim prinosom do 50 %. Izvršeni su kratkotrajni eksperimenti na određenim lokacijama u žarištu solarnog koncentratora da bi se dobile informacije o kinetici karbotermičke redukcije MgO. Sprovedeni eksperimenti su istakli uticaj temperature na CO emisiju. 50 do 80% emisije CO uglavnom se dešava u prvih 100 sekundi od početka eksperimenta. Utvrđeno je da je reakcija na međugraničnoj površini MgO i C dominantan proces u inicijalnoj fazi karbotermičke redukcije. Izračunata energija aktivacije ovog procesa je oko 260 kJ mol-1.

Ključne reči

Karbotermička redukcija; Koncentrovana solarna energija; XRD karakterizacija; Mikrostruktura; Kinetika

Reference

Bergthorson, J.M., Goroshin, S., Soo, M.J., Julien, P., Palecka, J., Frost, D.L., Jarvis, D.J. (2015) Appl. Energy, 160, 368-382
Brooks, G., Trang, S., Witt, P., Khan, M.N.H., Nagle, M. (2006) The carbothermic route to magnesium. JOM, 58(5): 51-55
Chase, M.W.Jr. (1998) NIST-JANAF: Thermochemical tables. J. Phys. Chem. Ref. Data, 4th edition, n°9
Chubukov, B.A., Palumbo, A.W., Rowe, S.C., Hischier, I., Groehn, A.J., Weimer, A.W. (2016) Pressure dependent kinetics of magnesium oxide carbothermal reduction. Thermochimica Acta, 636: 23-32
Chung, F.H. (1974) J. Appl. Cryst, 7, 519-525
Engell, J., Frederiksen, S., Nielsen, K.A. (1998) US patent 5803947
Epstein, M., Olalde, G., Santén, S., Steinfeld, A., Wieckert, C. (2008) Towards the Industrial Solar Carbothermal Production of Zinc. Journal of Solar Energy Engineering, 130(1): 014505
Feng, G., Nie, Z., Wang, Z., Gong, X., Zuo, T.A. (2011) Mater. Sci. Forum, 685, 152-160
Fruehan, R.J., Martonik, L.J. (1976) The Rate of reduction of MgO by carbon. Metallurgical Transactions B, 7(4): 537-542
Galvez, M.E., Frei, A., Albisetti, G., Lunardi, G., Steinfeld, A. (2008) Int. J. Hydrog. Energy, 33, 2880-2890
Halmann, M., Frei, A., Steinfeld, A. (2011) Vacuum Carbothermic Reduction of Al 2 O 3 , BeO, MgO-CaO, TiO 2 , ZrO 2 , HfO 2. Mineral Processing and Extractive Metallurgy Review, 32(4): 247-266
Hansgirg, F.J. (1943) Iron Age, Vol. 18, p. 56-63
Hischier, I., Chubukov, B.A., Wallace, M.A., Fisher, R.P., Palumbo, A.W., Rowe, S.C., Groehn, A.J., Weimer, A.W. (2016) A novel experimental method to study metal vapor condensation/oxidation: Mg in CO and CO 2 at reduced pressures. Solar Energy, 139: 389-397
Li, H., Zhang, W., Li, Q., Chen, B. (2015) Updated CO2 emission from Mg production by Pidgeon process: Implications for automotive application life cycle. Resources, Conservation and Recycling, 100: 41-48
Lomba, R., Bernard, S., Halter, F., Chauveau, C., Mounaïm-Rousselle, C., Gillard, P., Tahtouh, T., Guézet, O. (2015) u: 53rd AIAA Aerospace Sciences Meeting - AIAA Scitech, Kissimmee, USA, 5-9th January 2015, Proc, p. 6986-7000
Millar, J., Palumbo, R.D., Rouanet, A., Pichelin, G. (1997) The production of Zn from ZnO in a two-step solar process utilizing FeO and Fe3O4. Energy, 22(2-3): 301-309
Murti, N., Seshadri, V. (1982) Kinetics of reduction of synthetic chromite with carbon. Transactions of the Iron and Steel Institute of Japan, 22(12): 925-933
Palumbo, R., Léde, J., Boutin, O., Elorza, R.E., Steinfeld, A., Möller, S., Weidenkaff, A., Fletcher, E.A., Bielicki, J. (1998) The production of Zn from ZnO in a high-temperature solar decomposition quench process-I. The scientific framework for the process. Chemical Engineering Science, 53(14): 2503-2517
Palumbo, R., Rouanet, A., Pichelin, G. (1995) The solar thermal decomposition of TiO2 at temperatures above 2200 K and its use in the production of Zn from ZnO. Energy, 20(9): 857-868
Prentice, L.H., Nagle, M.W. (2009) u: Magnesium Technology 2009 (TMS), San Francisco, CA, United States, Proc, 35-39
Prentice, L.H., Nagle, M.W., Barton, T.R.D., Tassios, S., Kuan, B.T., Witt, P.J., Constanti-Carey, K.K. (2012) u: Magnesium Technology 2012 (TMS), Orlando, FL, United States, Proc, p. 31-35
Puig, J., Balat-Pichelin, M. (2016) Production of metallic nanopowders (Mg, Al) by solar carbothermal reduction of their oxides at low pressure. Journal of Magnesium and Alloys, 4(2): 140-150
Ray, H. (1993) Kinetics of metallurgical reactions. Oxford - New Delhi: IBH Publishing
Rongti, L., Wei, P., Sano, M. (2003) Kinetics and mechanism of carbothermic reduction of magnesia. Metallurgical and Materials Transactions B, 34(4): 433-437
Shafirovich, E.Ya., Goldshleger, U.I. (1992) Combustion of Magnesium Particles in CO2/CO Mixtures. Combustion Science and Technology, 84(1): 33-43
Snyder, R.L. (1992) Powder Diffr, 7, 186-193
Steinfeld, A. (1997) Energy, 22, 311-316
Steinfeld, A., Kuhn, P., Reller, A., Palumbo, R., Murray, J., Tamaura, Y. (1998) Int. J. Hydrog. Energy, 23, 767-774
Steinfeld, A., Larson, C., Palumbo, R., Foley, M. (1996) Thermodynamic analysis of the co-production of zinc and synthesis gas using solar process heat. Energy, 21(3): 205-222
Touloukian, Y.S., Dewitt, D.P., Hernicz, R.S. (1972) Thermal Radiative Properties. Boston, MA: Springer Nature America, Inc
Vishnevetsky, I., Epstein, M. (2015) Solar carbothermic reduction of alumina, magnesia and boria under vacuum. Solar Energy, 111: 236-251
Wang, Y., Wang, L., Yu, J., Chou, K.C. (2014) Kinetics of carbothermic reduction of synthetic chromite. Journal of Mining and Metallurgy B: Metallurgy, vol. 50, br. 1, str. 15-21
Xie, W., Chen, J., Wang, H., Zhang, X., Peng, X., Yang, Y. (2016) Kinetics of magnesium preparation by vacuum-assisted carbothermic reduction method. Rare Metals, 35(2): 192-197