Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:0
  • preuzimanja u poslednjih 30 dana:0
članak: 8 od 78  
Back povratak na rezultate
Journal of Mining and Metallurgy B: Metallurgy
2019, vol. 55, br. 2, str. 227-234
jezik rada: engleski
vrsta rada: neklasifikovan
objavljeno: 18/02/2020
doi: 10.2298/JMMB181031022D
Creative Commons License 4.0
Mikrostruktura i tribološke osobine prevlake od W-Mo legure na zupčanicima proizvedenim postupkom metalurgije praha po tehnologiji legiranja površine duplim mlazom plazme
aNanjing University of Aeronautics and Astronautics, College of Materials Science and Technology, Nanjing, Jiangsu, China + Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Key Laboratory of Materials Preparation and Protection for Harsh Environment, Nanjing, Jiangsu, China
bNanjing University of Aeronautics and Astronautics, College of Materials Science and Technology, Nanjing, Jiangsu, China
cNanjing University of Aeronautics and Astronautics, College of Materials Science and Technology, Nanjing, Jiangsu, China + Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Key Laboratory of Materials Preparation and Protection for Harsh Environment, Nanjing, Jiangsu, China + Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing, Jiangsu, China

e-adresa: weidongbo_nuaa@163.com, lhx@nuaa.edu.cn

Projekat

This project was supported by Natural Science Foundation for Excellent Young Scientists of Jiangsu Province, China (Grant No. BK20180068)
This project was supported by China Postdoctoral Science Foundation funded project (Grant No. 2018M630555)
This project was supported by the Fundamental Research Funds for the Central Universities, China (Grant No. NS2018039)
This project was supported by Opening Project of Key Laboratory of Materials Preparation and Protection for Harsh Environment (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology (Grant No. NJ2018009)
This project was supported by Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology (Grant No. ASMA201701)

Sažetak

U ovom radu je predstavljena primena postupka legiranja površine plazmom, na zupčanike dobijene postupkom metalurgije praha u cilju povećanja njihove otpornosti na habanje. Tokom postuka je dobijena prevlaka W-Mo legure. SEM, EDS i XRD analize su korišćene za ispitivanje morfologije, mikrostrukture i sastav faze. Test tvrdoće po Vickers-u i test nano-ozubljenja su korišćeni za ispitivanje tvrdoće materijala. Tribološke osobine ove opreme, pre i posle postupka legiranja površine plazmom, određene su naizmenično kliznim tribometrom sa kuglom na disku, u suvim uslovima na sobnoj temperaturi. Rezultati pokazuju da je prevlaka W-Mo legure homogena i bez defekata, i da se sastoji od nataloženog sloja i difuzionog sloja. Prosečna mikrotvrdoća pre i posle postupka legiranja, iznosi 145.8 HV0.1 i 344.4 HV0.1. Nanotvrdoća nataloženog sloja iznosi 5,76 GPa, a difuznog sloja 14.35 GPa. Specifična brzina habanja prevlake je manja od početne brzine habanja dela. Mehanizam habanja W-Mo prevlake predstavlja neznatno adhezivno habanje. W-Mo prevlaka dobijena tehnikom legiranja površine duplim mlazom plazme može znatno da poveća otpornost habanja zupčanika dobijenih postupkom metalurgije praha.

Ključne reči

Legiranje površine plazmom; Mikrostruktura; Trenje i habanje; Mehanizam habanja; Zupčanici dobijena postupkom metalurgije praha

Reference

Anthony, X.M., Prashantha, K.H.G., Ajith, K.K. (2018) Mater. Today: Proceeding, 5 (2) 6588-6596
Bastwros, M., Kim, G.Y., Zhu, C., Zhang, K., Wang, S.R., Tang, X.D., Wang, X.R. (2014) Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Composites Part B: Engineering, 60: 111-118
Beddoes, J., Bibby, M.J. (1999) Powder metallurgy. u: Principles of Metal Manufacturing Processes, Burlington: Butterworth-Heinemann Ltd, 173-189
Bocchini, G. (1999) Warm compaction of metal powders: Why it works, why it requires a sophisticated engineering approach. Powder Metallurgy, 42(2): 171-180
Chen, X.H., Zhang, P.Z., Wei, D.B., Huang, J., Xuan, W. (2013) Surface modification of pure titanium by plasma tantalumising. Surface Engineering, 29(3): 228-233
Fordén, L., Bengtsson, S., Lipp, K. (2003) u: Euro Powder metallurgy Congress & Exhibition, 13-16 October, Valencia, Spain, p. 03-16
Halesh, S.B., Dinesh, P. (2014) IJEIT, 4 (1) 116-120
Hinzmann, G., Sterkenburg, D. (2005) HVC set to move on to multi-level PM applications. Metal Powder Report, 60(5): 32-33
Huang, C., Zhang, Y.Z., Vilar, R., Shen, J.Y. (2012) Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti-6Al-4V substrate. Materials & Design, 41: 338-343
Jang, G.B., Hur, M.D., Kang, S.S. (2000) A study on the development of a substitution process by powder metallurgy in automobile parts. Journal of Materials Processing Technology, 100(1-3): 110-115
Jones, P.K., Buckley-Golder, K., Lawcock, R. (1997) Int. J. Powder Metall, 33(3): 37-44
Keddam, M., Thiriet, T., Marcos, G., Czerwiec, T. (2017) Characterization of the expanded austenite developed on AISI 316 LM steel by plasma nitriding. Journal of Mining and Metallurgy B: Metallurgy, vol. 53, br. 1, str. 47-52
Liu, X., Xiao, Z.Y., Guan, H.Y., Zhang, W., Li, F.L. (2016) Friction and wear behaviours of surface densified powder metallurgy Fe-2Cu-0.6C material. Powder Metallurgy, 59(5): 329-334
Liu, X.P., Xu, Z., Xu, W. (2005) T. Nonferr. Metal Soc, 15(3): 420-423
Liu, Y., Yu, S.R., Ren, L.Q. (2006) Metall. Mater. Trans. A, 37(12): 3639-3645
Makoto, I., Tsuyoshi, K. (2005) PM Asia 2005: 4-6 April, Shanghai, China, Conference Proceedings. Metal Powder Report, p. 240-248
Muñoz, R.R.M., Casteletti, L.C., Canale, L.C.F., Totten, G.E. (2008) Wear, 265(1-2): 57-64
Paul, S., Mikael, K., Ingrid, H. (2002) Moulding technology for voice coil motor magnets. Metal Powder Report, 57(4): 26-31
Qiu, Z.K., Zhang, P.Z., Wei, D.B., Wei, X.B., Chen, X. (2015) A study on tribological behavior of double-glow plasma surface alloying W-Mo coating on gear steel. Surface and Coatings Technology, 278: 92-98
Stagno, E., Pinasco, M.R., Palombarini, G., Ienco, M.G., Bocchini, G.F. (1997) Behaviour of sintered 410 low carbon steels towards ion nitriding. Journal of Alloys and Compounds, 247(1-2): 172-179
Takemasu, T., Koide, T., Shinbutsu, T., Sasaki, H., Takeda, Y., Nishida, S. (2014) Effect of Surface Rolling on Load Bearing Capacity of Pre-alloyed Sintered Steel Gears with Different Densities. Procedia Engineering, 81: 334-339
Wang, Q., Zhang, P.Z., Wei, D.B., Chen, X.H., Wang, R., Wang, H., Feng, K. (2013) Microstructure and sliding wear behavior of pure titanium surface modified by double-glow plasma surface alloying with Nb. Materials & Design, 52: 265-273
Wei, D.B., Zhang, P.Z., Yao, Z.J., Chen, X., Li, F. (2018) Double glow plasma surface Cr-Ni alloying of Ti6Al4V alloys: Mechanical properties and impact of preparing process on the substrate. Vacuum, 155: 233-241
Wei, D.B., Zhang, P.Z., Yao, Z.J., Liang, W.P., Miao, Q., Xu, Z. (2013) Oxidation of double-glow plasma chromising coating on TC4 titanium alloys. Corrosion Science, 66: 43-50
Wu, H.Y., Zhang, P.Z., Chen, W., Wang, L., Zhao, H.F., Xu, Z. (2009) High-temperature tribological behaviors of Ti2AlNb-based alloys by plasma surface duplex treatment. Transactions of Nonferrous Metals Society of China, 19(5): 1121-1125