Metrika članka

  • citati u SCindeksu: [1]
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:3
  • preuzimanja u poslednjih 30 dana:1
članak: 9 od 72  
Back povratak na rezultate
Journal of Mining and Metallurgy B: Metallurgy
2018, vol. 54, br. 2, str. 169-177
jezik rada: engleski
vrsta rada: neklasifikovan
doi:10.2298/JMMB171225005D

Creative Commons License 4.0
Karakterizacija mikrostrukture i kvantitativna analiza matričnog kompozita legure bakra, ojačanog WC-XNI prahom, koji je dobijen postupkom spontane infiltracije
aUniversity of Sciences and Technology Houari Boumediene, Laboratory of Science and Materials Engineering, Algeria
bKocaeli University, Department of Metallurgical and Materials Engineering, Izmit, Turkey

e-adresa: ryamanoglu@gmail.com

Projekat

Project by the Laboratory of Science and Materials Engineering (LSGM)
Project by the University of Science and Technology Houari Boumediene Algeria (USTHB)
Project by the Scientific Research Project Unit of Kocaeli University, Turkey

Sažetak

Tokom ovog istraživanja, postupkom spontane infiltracije, dobijeni su matrični kompoziti legure bakra ojačani česticama volfram-karbida uz dodavanje različitog sadržaja Ni (0, 3, 5, 7 i 10 wt%). Postupak analize slika korišćen je za određivanje mikrostrukturnih parametara, kao što su veličina čestice i njihova distribucija, površina loma, srednji slobodni put vezivnog metala, kao i veličina pora. Ispitivan je i uticaj dodavanja Ni na mikrostrukturu, gustinu i tvrdoću. Dobijeni rezultati pokazuju da dodavanje male količine Ni poboljšava proces učvršćivanja ubačenih kompozita. Najveće vrednosti za gustinu, 11.84 g/cm3 , i tvrdoću, 327HV, dobijene su za kompozit sa dodatkom 3wt.% Ni. Rezultati kvantitativne analize se slažu sa dobijenim podacima o osobinama mikrostrukture i dobijenim vrednostima za tvrdoću.

Ključne reči

Metalni matrični kompoziti; Čestice volfram-karbida; Analiza slike; Kvantifikacija; Mikrostruktura

Reference

Abbaszadeh, H., Masoudi, A., Safabinesh, H., Takestani, M. (2012) Investigation on the characteristics of micro- and nano-structured W-15wt.%Cu composites prepared by powder metallurgy route. International Journal of Refractory Metals and Hard Materials, 30(1): 145-151
Akhtar, F., Askari, S.J., Shah, K.A., Du, X., Guo, S. (2009) Microstructure, mechanical properties, electrical conductivity and wear behavior of high volume TiC reinforced Cu-matrix composites. Materials Characterization, 60(4): 327-336
Anon (2017) Standard test methods for Vickers hardness and knoop hardness of metallic materials. ASTM International
Anon (2008) Standard test methods for density of compacted or sintered powder metallurgy (PM) products using Archimedes’ principle. ASTM International
Cantor, B., Dunne, F.P., Stone, I.C. (2003) Metal and ceramic matrix composites. CRC Press
Chang, I., Zhao, Y. (2013) Advances in powder metallurgy. Elsevier BV
Charpentier, M., Hazotte, A., Daloz, D. (2008) Lamellar transformation in near-γ TiAl alloys-Quantitative analysis of kinetics and microstructure. Materials Science and Engineering: A, 491(1-2): 321-330
Chung, C., Lee, M., Tsai, M., Chu, C., Lin, S. (2014) High thermal conductive diamond/Cu-Ti composites fabricated by pressureless sintering technique. Applied Thermal Engineering, 69(1-2): 208-213
Clyne, T.W. (2000) An Introductory Overview of MMC Systems, Types, and Developments. u: Comprehensive Composite Materials, Elsevier BV, str. 1-26
Coster, M., Arnould, X., Chermant, J.L., Chermant, L., Chartier, T. (2005) The use of image analysis for sintering investigations: The example of CeO2 doped with TiO2. Journal of the European Ceramic Society, 25(15): 3427-3435
de Macedo, H., da Silva, A., de Melo, D. (2003) The spreading of cobalt, nickel and iron on tungsten carbide and the first stage of hard metal sintering. Materials Letters, 57(24-25): 3924-3932
de Oliveira, L.J., Cabral, S.C., Filgueira, M. (2012) Study hot pressed Fe-diamond composites graphitization. International Journal of Refractory Metals and Hard Materials, 35: 228-234
Dengiz, O., McAfee, R., Nettleship, I., Smith, A.E. (2007) The application of automated image analysis to dense heterogeneities in partially sintered alumina. Journal of the European Ceramic Society, 27(4): 1927-1933
Deshpande, P.K., Li, J.H., Lin, R.Y. (2006) Infrared processed Cu composites reinforced with WC particles. Materials Science and Engineering: A, 429(1-2): 58-65
Deshpande, P.K., Lin, R.Y. (2006) Wear resistance of WC particle reinforced copper matrix composites and the effect of porosity. Materials Science and Engineering: A, 418(1-2): 137-145
Eun, K. Y., Kim, D. Y., Yoon, D. N. (1984) Variation of Mechanical Properties with Ni/Co Ratio in WC-(Co-Ni) Hardmetals. Powder Metallurgy, 27(2): 112-114
Eustathopoulos, N., Mortensen, A., Suresh, S. (1993) Capillary phenomena, interfacial bonding and reactivity. Butterworths
Exner, H.E. (2011) Stereology and 3d microscopy: useful alternatives or competitors in the quantitative analysis of microstructures?. Image Analysis & Stereology, 23(2): 73
Fan, Y., Guo, H., Xu, J., Chu, K., Zhu, X., Jia, C. (2011) Effects of boron on the microstructure and thermal properties of Cu/diamond composites prepared by pressure infiltration. International Journal of Minerals, Metallurgy, and Materials, 18(4): 472-478
Fang, Z., Patterson, B.R., Turner, M.E. (1993) Modeling particle size distributions by the Weibull distribution function. Materials Characterization, 31(3): 177-182
Fridlyander, J. (2012) Metal matrix composites. Springer Science & Business Media
Friel, J.J. (2000) Practical guide to image analysis. ASM international
German, R.M. (2001) Fund. Refract. Technol, 3-28
German, R.M. (2010) Coarsening in Sintering: Grain Shape Distribution, Grain Size Distribution, and Grain Growth Kinetics in Solid-Pore Systems. Critical Reviews in Solid State and Materials Sciences, 35(4): 263-305
German, R.M., Suri, P., Park, S.J. (2009) Review: liquid phase sintering. Journal of Materials Science, 44(1): 1-39
Gokhale, A.M. (2016) Stereological Techniques for Quantitative Characterization of Microstructures. Microscopy and Microanalysis, 22(S3): 1966-1967
Ho, P.W., Li, Q.F., Fuh, J.Y.H. (2008) Evaluation of W-Cu metal matrix composites produced by powder injection molding and liquid infiltration. Materials Science and Engineering: A, 485(1-2): 657-663
Hong, E., Kaplin, B., You, T., Suh, M., Kim, Y., Choe, H. (2011) Tribological properties of copper alloy-based composites reinforced with tungsten carbide particles. Wear, 270(9-10): 591-597
Ibrahim, A., Abdallah, M., Mostafa, S.F., Hegazy, A. A. (2009) An experimental investigation on the W-Cu composites. Materials & Design, 30(4): 1398-1403
Ibrahim, H., Aziz, A., Rahmat, A. (2014) Enhanced liquid-phase sintering of W-Cu composites by liquid infiltration. International Journal of Refractory Metals and Hard Materials, 43: 222-226
Ihn, T.-H., Lee, S.-W., Joo, S.-K. (1994) Effect of Transition Metal Addition on Liquid Phase Sintering of W-Cu. Powder Metallurgy, 37(4): 283-288
Johnson, J. L., German, R. M. (1993) Phase equilibria effects on the enhanced liquid phase sintering of tungsten- copper. Metallurgical Transactions A, 24(11): 2369-2377
Johnson, J.L., German, R.M. (1996) Solid-state contributions to densification during liquid-phase sintering. Metall. Mater. Trans, 27B 901-909
Johnson, J.L., Campbell, L.G., Park, S.J., German, R.M. (2009) Grain Growth in Dilute Tungsten Heavy Alloys during Liquid-Phase Sintering under Microgravity Conditions. Metallurgical and Materials Transactions A, 40(2): 426-437
Kembaiyan, K.T., Keshavan, K. (1995) Combating severe fluid erosion and corrosion of drill bits using thermal spray coatings. Wear, 186-187: 487-492
Kim, H., Shon, I., Yoon, J., Doh, J., Munir, Z.A. (2006) Rapid sintering of ultrafine WC-Ni cermets. International Journal of Refractory Metals and Hard Materials, 24(6): 427-431
Kipphut, C. M., Bose, A., Farooq, S., German, R. M. (1988) Gravity and configurational energy induced microstructural changes in liquid phase sintering. Metallurgical Transactions A, 19(8): 1905-1913
Lee, H., Hong, S. (2003) Mater. Sci. Tech., 19, 1057-64
Léger, A., Weber, L., Mortensen, A. (2014) Infiltration of tin bronze into alumina particle beds: influence of alloy chemistry on drainage curves. Journal of Materials Science, 49(22): 7669-7678
Li, M., Sun, Y. H., Dong, B., Wu, H. D., Gao, K. (2015) Study on effects of CNTs on the properties of WC-based impregnated diamond matrix composites. Materials Research Innovations, 19(sup5): S5-59-S5-63
Li, M., Sun, Y., Meng, Q., Wu, H., Gao, K., Liu, B. (2016) Fabrication of Fe-Based Diamond Composites by Pressureless Infiltration. Materials, 9(12): 1006
Li, W., Zhan, J., Wang, S., Dong, H., Li, Y., Liu, Y. (2012) Characterizations and mechanical properties of impregnated diamond segment using Cu-Fe-Co metal matrix. Rare Metals, 31(1): 81-87
Lin, N., Jiang, Y., Zhang, D.F., Wu, C.H., He, Y.H., Xiao, D.H. (2011) Effect of Cu, Ni on the property and microstructure of ultrafine WC-10Co alloys by sinter-hipping. International Journal of Refractory Metals and Hard Materials, 29(4): 509-515
Liu, J., Yang, S., Xia, W., Jiang, X., Gui, C. (2016) Microstructure and wear resistance performance of Cu-Ni-Mn alloy based hardfacing coatings reinforced by WC particles. Journal of Alloys and Compounds, 654: 63-70
Liu, Y., German, R.M., Iacocca, R.G. (1999) Microstructure quantification procedures in liquid-phase sintered materials. Acta Materialia, 47(3): 915-926
Manfredi, D., Pavese, M., Biamino, S., Antonini, A., Fino, P., Badini, C. (2010) Microstructure and mechanical properties of co-continuous metal/ceramic composites obtained from Reactive Metal Penetration of commercial aluminium alloys into cordierite. Composites Part A: Applied Science and Manufacturing, 41(5): 639-645
Marou, A.O., Azman, M.-A., Yung, D.-L., Fridrici, V., Kapsa, Ph. (2016) Influence of different reinforcing particles on the scratch resistance and microstructure of different WC-Ni composites. Wear, 352-353: 130-135
Michaud, V., Mortensen, A. (2001) Infiltration processing of fibre reinforced composites: governing phenomena. Composites Part A: Applied Science and Manufacturing, 32(8): 981-996
Missiaen, J.-M. (2008) Solid-state spreading and sintering of multiphase materials. Materials Science and Engineering: A, 475(1-2): 2-11
Mortensen, A. (2000) Melt Infiltration of Metal Matrix Composites. u: Comprehensive Composite Materials, Elsevier BV, str. 521-554
Mortensen, A., Llorca, J. (2010) Metal Matrix Composites. Annual Review of Materials Research, 40(1): 243-270
Natarajan, N., Krishnaraj, V., Davim, J.P. (2014) Metal matrix composites: synthesis, wear characteristics, machinability study of MMC brake drum. Springer
Panda, E., Mehrotra, S. P., Mazumdar, D. (2006) Mathematical modeling of particle segregation during centrifugal casting of metal matrix composites. Metallurgical and Materials Transactions A, 37(5): 1675-1687
Petersson, A., Ågren, J. (2005) Rearrangement and pore size evolution during WC-Co sintering below the eutectic temperature. Acta Materialia, 53(6): 1673-1683
Ray, N., Kempf, B., Mützel, T., Heringhaus, F., Froyen, L., Vanmeensel, K., Vleugels, J. (2016) Effect of Ni addition on the contact resistance of Ag-WC electrical contacts. Journal of Alloys and Compounds, 670: 188-197
Ren, S., He, X., Qu, X., Li, Y. (2008) Effect of controlled interfacial reaction on the microstructure and properties of the SiCp/Al composites prepared by pressureless infiltration. Journal of Alloys and Compounds, 455(1-2): 424-431
Reyes, M., Neville, A. (2003) Degradation mechanisms of Co-based alloy and WC metal-matrix composites for drilling tools offshore. Wear, 255(7-12): 1143-1156
Sánchez, M., Rams, J., Ureña, A. (2010) Fabrication of aluminium composites reinforced with carbon fibres by a centrifugal infiltration process. Composites Part A: Applied Science and Manufacturing, 41(11): 1605-1611
Shen, J., Campbell, L., Suri, P., German, R.M. (2005) Quantitative microstructure analysis of tungsten heavy alloys (W-Ni-Cu) during initial stage liquid phase sintering. International Journal of Refractory Metals and Hard Materials, 23(2): 99-108
Silva, V.L., Fernandes, C.M., Senos, A.M.R. (2016) Copper wettability on tungsten carbide surfaces. Ceramics International, 42(1): 1191-1196
Sun, Y., Wu, H., Li, M., Meng, Q., Gao, K., Lü, X., Liu, B. (2016) The Effect of ZrO2 Nanoparticles on the Microstructure and Properties of Sintered WC-Bronze-Based Diamond Composites. Materials, 9(5): 343
Suresh, S. (2013) Fundamentals of metal-matrix composites. Elsevier
Tan, S., Fang, X., Yang, K., Duan, L. (2014) A new composite impregnated diamond bit for extra-hard, compact, and nonabrasive rock formation. International Journal of Refractory Metals and Hard Materials, 43: 186-192
Tewari, A., Gokhale, A.M., German, R.M. (1999) Effect of gravity on three-dimensional coordination number distribution in liquid phase sintered microstructures. Acta Materialia, 47(13): 3721-3734
Wojnar, L. (1998) Image analysis: applications in materials engineering. Crc Press
Wojnar, L., Kurzydlowski, K.J., Szala, J. (2004) Mater. Park. OH: ASM Inter, 403-427
Xu, Y., Yang, Z., Han, Z., Liu, G., Li, J. (2014) Fabrication of Ni/WC composite with two distinct layers through centrifugal infiltration combined with a thermite reaction. Ceramics International, 40(1): 1037-1043
Yusoff, M., Othman, R., Hussain, Z. (2011) Mechanical alloying and sintering of nanostructured tungsten carbide-reinforced copper composite and its characterization. Materials & Design, 32(6): 3293-3298
Zhang, X., Zhou, J., Lin, N., Li, K., Fu, K., Huang, B., He, Y. (2016) Effects of Ni addition and cyclic sintering on microstructure and mechanical properties of coarse grained WC-10Co cemented carbides. International Journal of Refractory Metals and Hard Materials, 57: 64-69
Zhao, C. (1996) J. U. Pet. China Nat. Sci. E, 20, 65-69
Zhou, K.C., Pei, H.L., Xiao, J.K., Zhang, L. Rare Metals, 1-6