Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:1
  • preuzimanja u poslednjih 30 dana:1
članak: 7 od 23  
Back povratak na rezultate
Zavarivanje i zavarene konstrukcije
2019, vol. 64, br. 4, str. 171-181
jezik rada: engleski, srpski
vrsta rada: izvorni naučni članak
objavljeno: 30/01/2020
doi: 10.5937/zzk1904171V
Uticaj legirajućih elemenata na mikrostrukturu i mikrotvrdoću zavarenih legura titana za medicinsku upotrebu
aUniversity Politehnica of Bucharest, Bucharest, Romania
bTechnical University Gheorghe Asachi, Iași, Romania
cISIM Timisoara, Timisoara, Romania

e-adresa: ioneliav@yahoo.co.uk, victorgeanta@yahoo.com, radustefanoiu@yahoo.com, peviz@tuiasi.ro, sav@tuiasi.ro, ebinchiciu@isim.ro

Projekat

Finansijer: Ministarstva za istraživanje i inovacije, CCCDI - UEFISCDI, Projekat: PN-III-P1-1.2-PCCDI-2017-0239 / 60 PCCDI 2018, dobivanje i ekspertiza novih biocompativnih materijala za medicinske primene - MedicalMetMat ", u okviru PNCDI III

Sažetak

U radu su predstavljeni uticaji nekih legirajućih elemenata (Al, Fe i Mn) na mikrostrukturu i mikrotvrdoću titanovih legura koje se mogu koristiti u medicinske svrhe. Eksperimentalne legure su proizvedene topljenjem u peći sa inertnom atmosferom argona RAV, korišćenjem hemijskih elemenata visoke čistoće i komercijalne legure Ti8Al4V. Razvijene su, pod istim uslovima, druge binarne legure (Ti9Al, Ti5Fe, Ti3Mn, Ti6Mn) za isticanje uticaja pojedinih elemenata Al, Fe i Mn na karakteristike legura titana. Mikrostrukturna analiza je otkrila promene mikrostrukture nastale uvođenjem alfa stabilizirajućih elemenata (Al) ili beta stabilizatora (Fe, Mn). Zatim su analizirani efekti svake vrste hemikalija na mikrotvrdoću metalne matrice i gustinu eksperimentalnih legura.

Ključne reči

Reference

Baloyi, R. (2010) Investigation into the Effect of Solid Solution Chemistry on Lattice Parameters and Microstructural Properties of beta-Ti Alloys. Johannesburg, dissertation
Bermingham, M.J., McDonald, S.D., Dargusch, M.S., Stjohn, D.H. (2007) Microstructure of Cast Titanium Alloys. Materials Forum, volume 31, 84 -89
Breme, H.J., Biehl, V., Helsen, J.A. (1998) Metals and implants. Biomaterials Science and Engineering Series, 54-55
Breme, H.J., Helsen, J.A. (1998) Metals as Biomaterials-Selection of Materials. Wiley: Biomaterials Science and Engineering Series, 20-21
de Farias, A.C.R., Flower, H.M. (1999) Microstructure and phase relationships in Ti-Al-Si System. Materials Science and Technology, Vol. 15, 869-877
Elias, C.N., Lima, J.H.C., Valiev, R., Meyers, M.A. (2008) Biomedical applications of titanium and its alloys. Biological Materials Science, JOM, 47-49
Hansen, M., Anderko, K. (1962) Structure of binary alloys. vol. 1, p. 607
Hansen, M., Anderko, K. (1958) Structure of binary alloys. vol. 2, p. 1487
Hao, Y.L., Xu, D.S., Cui, Y.Y., Yang, R., Li, D. (1999) Acta Materialia, 1129
Hildebrand, H.F., Hornez, J.C. (1998) Biological response and biocompatibility. Wiley: Biomaterials Science and Engineering Series, 268-270
Ikeda, M., Ueda, M., Matsunaga, R., Ogawa, M., Niinomi, M. (2009) Isothermal Aging Behavior of Beta Titanium-Manganese Alloys. Materials Transactions, 50(12): 2737-2743
Jeong, H.W., Kim, S.E., Hyun, Y.T., Lee, Y.T., Park, J.K. (2005) Microstructures and Elastic Moduli of Binary Titanium Alloys Containing Biocompatible Alloying Elements. Materials Science Forum, 475-479: 2291-2294
Levashov, E.A., Petrzhik, M.I., Shtansky, D.V., Kirykhantsev-Korneev, P.V., Sheveyko, A.N., Valiev, R.Z., Gunderov, D.V., Prokoshkin, S.D., Korotitskiy, A.V., Smolin, A. (2013) Nanostructured titanium alloys and multicomponent bioactive films: Mechanical behavior at indentation. Materials Science and Engineering: A, 570: 51-62
Malek, J., Hnilica, F., Vesely, J. (2012) Beta Titanium Alloy Ti35Nb6Ta with Boron Addition. u: Metal 2012, Brno, Czech Republic, p. 6
Michelle, G.H., Berner, S., Dard, M. (2012) A Review of Titanium Zirconium (TiZr) Alloys for Use in Endosseous Dental Implants. Materials, 5(8): 1348-1360
Niinomi, M. (2003) Recent research and development in titanium alloys for biomedical applications and healthcare goods. Science and Technology of Advanced Materials, 4(5): 445-454
Niinomi, M. (2008) Biologically and Mechanically Biocompatible Titanium Alloys. Materials Transactions, 49(10): 2170-2178
Ohnuma, I., Fujita, Y., Mitsui, H., Ishikawa, K., Kainuma, R., Ishida, K. (2000) Phase equilibrium in the Ti-Al binary system. Acta Materialia, 48(12): 3113-3123
Oldani, C., Dominguez, A. (2012) Titanium as a Biomaterial for Implants, Recent Advanced in Arthroplasty. 149-162
Saunders, N. (1999) Phase Equilibria in Multi-Component g-TiAl Based Alloys, 'Gamma Titanium Aluminides'. p. 183
Shank, F. (1973) Structure of binary alloys. Metallurgy, p. 759
Tamirisakandala, S., Bhat, R.B., Tiley, J.S., Miracle, D.B. (2005) Grain refinement of cast titanium alloys via trace boron addition. Scripta Materialia, 53(12): 1421-1426
Voiculescu, I., Geanta, V., Binchiciu, E.M., Vizureanu, P., Binchiciu, H. (2018) Welding behaviour of new biocompatible titanium alloys. u: International Metallurgical Congress (8), Ohrid, Macedonia
Voiculescu, I., Donţu, O.G., Geantă, V., Ganatsios, S. (2007) Effects of the laser beam superficial heat treatment on the gas Tungsten arc Ti-6al-4v welded metal microstructure. u: Industrial Laser Applications (INDLAS 2007), Conference, Proceedings of SPIE, Vol. 7007, Article no.: 70070M
Zhang, F., Weidmann, A., Nebe, J., Beck, U., Burkel, E. (2010) Preparation, microstructures, mechanical properties, and cytocompatibility of TiMn alloys for biomedical applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 94(2): 406-13
Zhang, F., Burkel, E. (2011) Novel Titanium Manganese Alloys and Their Macroporous Foams for Biomedical Applications Prepared by Field Assisted Sintering. u: Biomedical Engineering, Trends in Materials Science, InTech, 203-224