Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:6
  • preuzimanja u poslednjih 30 dana:5
članak: 2 od 6  
Back povratak na rezultate
Hemijska industrija
2012, vol. 66, br. 6, str. 863-870
jezik rada: srpski
vrsta rada: naučni članak
objavljeno: 22/03/2013
doi: 10.2298/HEMIND120814111J
Uticaj udela montmorilonita na kinetiku umrežavanja epoksidnih nanokompozita
Univerzitet u Novom Sadu, Tehnološki fakultet

e-adresa: jovicic.mirjana@gmail.com

Projekat

Višeskalno strukturiranje polimernih nanokompozita i funkcionalnih materijala primenom različitih prekursora (MPNTR - 45022)

Sažetak

U ovom radu praćen je uticaj udela organski modifikovanog montmorilonita na kinetiku umrežavanja epoksid/amin sistema. Reakcija umrežavanja hibrida sa različitim udelom montmorilonita praćena je metodom diferencijalne skanirajuće kalorimetrije (DSC) programiranim zagrevanjem od 30 do 250 °C, sa tri različite brzine zagrevanja: 5, 10 i 20 °C/min. Modeli izokonverzije (dva integralna, Ozawa-Flynn-Wall i Kissinger-Akahira-Sunose, i jedan diferencijalni, Friedman) primenjeni su da se razjasni da li montmorilonit utiče na mehanizam reakcije umrežavanja hibrida. Epoksidni hibrid sa 10 mas.% organski modifikovanog montmorilonita ima značajno niže vrednosti energija aktivacije za definisane stepene reagovanja, čime je potvrđen katalitički efekat gline sa slojevitom strukturom kada je prisutna u reakcionoj smeši u dovoljnoj količini. Uticaj otežane difuzije pri kraju reakcije je izraženiji u prisustvu montmorilonita, čime je pokazano da njegovo prisustvo utiče na ceo mehanizam umrežavanja.

Ključne reči

Reference

Akahira, T., Sunose, T. (1971) Method of determining activation deterioration constant of electrical insulating materials. Res. rep. chiba. inst. technol, 16, 22-31
Alzina, C., Sbirrazzuoli, N., Mija, A. (2010) Hybrid nanocomposites: Advanced nonlinear method for calculating key kinetic parameters of complex cure kinetics. J. Phys. Chem. B, B 114: 12480-12487
Alzina, C., Mija, A., Vincent, L., Sbirrazzuoli, N. (2012) Effects of Incorporation of Organically Modified Montmorillonite on the Reaction Mechanism of Epoxy/Amine Cure. Journal of Physical Chemistry B, 116(19): 5786-5794
Blumstein, A. (1965) Polymerization of adsorbed monolayers: Thermal degradation of inserted polymers. J. polym. sci. pol. chem, 3, 2665-2673, II
Butzloff, P., D'souza, N.A., Golden, T.D., Garrett, D. (2001) Epoxy + montmorillonite nanocomposite: Effect of composition on reaction kinetics. Polymer Engineering & Science, 41(10): 1794-1802
Chin, I.J., Thurn-Albrecht, T., Kim, H.C., Russell, T.P., Wang, J. (2001) On exfoliation of montmorillonite in epoxy. Polymer, 42(13): 5947-5952
Coats, A.W., Redfern, J.P. (1964) Kinetic parameters from thermogravimetric data. Nature, 201, 68
de Paiva, L.B., Morales, A.R., Diaz, F.R. (2008) Organoclays: Properties, preparation and applications. Applied Clay Science, 42(1-2): 8-24
Friedman, H.L. (1964) Kinetics of thermal degradation of charforming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci., 6: 183-195
Gangopadhyay, R., de Amitabha (2000) Conducting polymer nanocomposites: A brief overview. Chemistry of Materials, 12(3): 608-622
Gough, L.J., Smith, I.T. (1960) A gel point method for the estimation of overall apparent activation energies of polymerization. Journal of Applied Polymer Science, 3(9): 362-364
Kaya, E., Tanoğlu, M., Okur, S. (2008) Layered clay/epoxy nanocomposites: Thermomechanical, flame retardancy, and optical properties. Journal of Applied Polymer Science, 109(2): 834-840
Kim, G.M., Lee, D.H., Hoffmann, B., Kressler, J., Stöppelmann, G. (2001) Influence of nanofillers on the deformation process in layered silicate/polyamide-12 nanocomposites. Polymer, 42(3): 1095-1100
Kissinger, H.E. (1957) Reaction kinetics in differential thermal analysis. Anal. Chem., 29, 1702-6
Kornmann, X., Lindberg, H., Berglund, L.A. (2001) Synthesis of epoxy-clay nanocomposites: Influence of the nature of the clay on structure. Polymer, 42(4): 1303-1310
Krishnamoorti, R., Vaia, R.A., Giannelis, E.P. (1996) Structure and Dynamics of Polymer-Layered Silicate Nanocomposites. Chemistry of Materials, 8(8): 1728-1734
Lan, T., Pinnavaia, T.J. (1994) Clay-Reinforced Epoxy Nanocomposites. Chemistry of Materials, 6(12): 2216-2219
Lee, H., Neville, K. (1967) Handbook of epoxy resins. New York: McGraw-Hill
Messersmith, P.B., Giannelis, E.P. (1994) Synthesis and Characterization of Layered Silicate-Epoxy Nanocomposites. Chemistry of Materials, 6(10): 1719-1725
Ngo, T.D., Ton-That, M.T., Hoa, S.V., Cole, K.C. (2008) Reinforcing effect of organoclay in rubbery and glassy epoxy resins, part 1: Dispersion and properties. Journal of Applied Polymer Science, 107(2): 1154-1162
Nikolaidis, A.K., Achilias, D.S., Karayannidis, G.P. (2012) Effect of the type of organic modifier on the polymerization kinetics and the properties of poly(methyl methacrylate)/organomodified montmorillonite nanocomposites. European Polymer Journal, 48(2): 240-251
Nikolaidis, A.K., Achilias, D.S., Karayannidis, G.P. (2011) Synthesis and Characterization of PMMA/Organomodified Montmorillonite Nanocomposites Prepared by in Situ Bulk Polymerization. Industrial & Engineering Chemistry Research, 50(2): 571-579
Ozawa, T. (1970) Kinetic analysis of derivative curves in thermal analysis. Journal of Thermal Analysis, 2(3): 301
Román, F., Montserrat, S., Hutchinson, J.M. (2007) On the effect of montmorillonite in the curing reaction of epoxy nanocomposites. Journal of Thermal Analysis and Calorimetry, 87(1): 113-118
Salahuddin, N., Moet, A., Hiltner, A., Baer, E. (2002) Nanoscale highly filled epoxy nanocomposite. European Polymer Journal, 38(7): 1477-1482
Salahuddin, N.A. (2004) Layered silicate/epoxy nanocomposites: Synthesis, characterization and properties. Polymers for Advanced Technologies, 15(5): 251-259
Sbirrazzuoli, N., Girault, Y., Elégant, L. (1997) Simulations for evaluation of kinetic methods in differential scanning calorimetry. Part 3 - Peak maximum evolution methods and isoconversional methods. Thermochimica Acta, 293(1-2): 25-37
Sbirrazzuoli, N., Vincent, L., Vyazovkin, S. (2000) Comparison of several computational procedures for evaluating the kinetics of thermally stimulated condensed phase reactions. Chemometrics and Intelligent Laboratory Systems, 54(1): 53-60
Shechter, L., Wynstra, J., Kurkjy, R.P. (1956) Glycidyl ether reactions with amines. Ind. Eng. Chem., 48: 94-97
Smith, I.T. (1961) The mechanism of the crosslinking of epoxide resins by amines. Polymer, 2: 95-108
Soriente, A., Arienzo, R., Rosa, M.D., Spinella, A., Scettri, A., Palombi, L. (1999) K10 montmorillonite catalysis. Green Chemistry, 1(3): 157-162
Vyazovkin, S. (2001) Modification of the integral isoconversional method to account for variation in the activation energy. Journal of Computational Chemistry, 22(2): 178-183
Vyazovkin, S. (1997) Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. Journal of Computational Chemistry, 18(3): 393-402
Wang, M.S., Pinnavaia, T.J. (1994) Clay-Polymer Nanocomposites Formed from Acidic Derivatives of Montmorillonite and an Epoxy Resin. Chemistry of Materials, 6(4): 468-474