Metrika članka

  • citati u SCindeksu: [1]
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:4
  • preuzimanja u poslednjih 30 dana:2
članak: 4 od 6  
Back povratak na rezultate
Hemijska industrija
2009, vol. 63, br. 6, str. 621-628
jezik rada: srpski
vrsta rada: naučni članak
objavljeno: 19/01/2010
doi: 10.2298/HEMIND0906621P
Termička stabilnost segmentiranih poliuretanskih elastomera ojačanih česticama gline
aUniverzitet u Novom Sadu, Tehnološki fakultet
bUniverzitet u Novom Sadu, Prirodno-matematički fakultet
cInstitut za opštu i fizičku hemiju, Beograd
dInstitut za hemiju makromolekula Češke akademije nauka, Prag, Češka

Sažetak

Cilj ovog rada je bio ispitivanje uticaja nanočestica gline na toplotna svojstva segmentiranih poliuretana dobijenih reakcijom polikarbonatnog diola, heksametilen-diizocijanata i produživača lanca 1,4-butandiola. Organski modifikovane čestice montmorilonita i bentonita su korišćene kao punioci za ojačanje elastomera. Struktura dobijenih materijala je varirana ili promenom sadržaja produživača lanaca ili tipom polikarbonatnog diola. Odnos OH grupa iz diolne komponente i OH grupa iz produživača lanca (R) bio je 1 ili 10. Toplotna svojstva materijala su određena korišćenjem modulovane diferencijalne skenirajuće kalorimetrije (MDSC). Termička degradacija je praćena simultanom diferencijalnom skenirajućom kalorimetrijom i termogravimetrijom koja istovremeno prati i promenu protoka toplote i gubitka mase. Temperatura prelaska u staklasto stanje, Tg, mekih segmenata elastomera iznosila je oko -33°C. Na osnovu termogravimetrijskih rezultata, ustanovljeno je da su dobijeni materijali veoma stabilni do 300°C.

Ključne reči

Reference

Adhikari, R., Gunatillake, P.A., Mccarthy, S.J., Meijs, G.F. (2000) Mixed macrodiol-based siloxane polyurethanes: Effect of the comacrodiol structure on properties and morphology. Journal of Applied Polymer Science, 78(5): 1071
Alexandre, M., Dubois, P. (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering R Reports, 28(1-2): 1
Budinski-Simendić, J., Plavšić, M. (2000) Gumolika elastičnost - izazov za teoretsku fiziku i nauku o materijalima. Svet polimera, vol. 3, br. 1, str. 1-11
Carrado, K. (2000) Synthetic organo- and polymer-clays: Preparation, characterization, and materials applications. Applied Clay Science, 17(1-2): 1
Coots, R.J., Kolycheck, E.G. (1993) Thermoplastic polyurethanes: the first commercial thermoplastic elastomers. Rubber World, 208(1), 19-21, 30
David, G., Simionescu, B.C., Simionescu, C.I. (2004) Functional micro- and nanoparticles: A possible tool for nanostructured materials. Rev. Roum. Chim., 52 (2007)105-112
Eceiza, A., Larrañaga, M., de la Caba, K., Kortaberria, G., Marieta, C., Corcuera, M.A. (2008) Structure-property relationships of thermoplastic polyurethane elastomers based on polycarbonate diols. Journal of Applied Polymer Science, 108(5): 3092
Eceiza, A., Larrañaga, M., de la Caba, K., Kortaberria, G., Marieta, C., Corcuera, M.A., Mondragonni, I., Rochas, C., Eeckhaut, G., Daunch, W.A., Leenslag, J.W., Higgins, J.S. (2004) Origin of multiple melting endotherms in a high hard block content polyurethane, 2. Structural investigation. Macromolecules, 37(4): 1411
Filho, F.G.R., Melo, T.J.A., Rabello, M.S., Suedina, M.L., Silva, S.M.L. (2005) Thermal stability of nanocomposites based on polypropylene and bentonite. Polymer Degradation and Stability, 89(3): 383
Finnigan, B., Martin, D., Halley, P., Truss, R., Campbell, K. (2004) Morphology and properties of thermoplastic polyurethane nanocomposites incorporating hydrophilic layered silicates. Polymer, 45(7): 2249
Gloaguen, J.M., Lefebvre, J.M. (2001) Plastic deformation behaviour of thermoplastic/clay nanocomposites. Polymer, 42(13): 5841
Golubeva, O.Y., Gusarov, V.V. (2007) Layered silicates with a montmorillonite structure: Preparation and prospects for the use in polymer nanocomposites. Glass Physics and Chemistry, 33(3): 237
Guo, J., Zhao, M., Ti, Y., Wang, B. (2007) Study on structure and performance of polycarbonate urethane synthesized via different copolymerization methods. Journal of Materials Science, 42(14): 5508
Hernandez, R., Weksler, J., Padsalgikar, A., Choi, T., Angelo, E., Lin, J.S., Xu, L.C., Siedlecki, C.A., Runt, J. (2008) A comparison of phase organization of model segmented polyurethanes with different intersegment compatibilities. Macromolecules, 41(24): 9767
Hussain, F., Hojati, M., Okamoto, M.M. (2006) Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview. J Comp. Mater, 40 1511-1575
Jasińska, L., Haponiuk, J.T., Balas, A. (2008) Dynamic mechanical properties and thermal degradation process of the compositions obtainedfrom unsaturated poly(ester urethanes) cross-linked with styrene. Journal of Thermal Analysis and Calorimetry, 93(3): 777
Khan, I., Smith, N., Jones, E., Finch, D.S., Cameron, R.E. (2005) Analysis and evaluation of a biomedical polycarbonate urethane tested in an in vitro study and an ovine arthroplasty model. Part I: materials selection and evaluation. Biomaterials, 26(6): 621-31
Kim, Y.S., Lee, J.S., Ji, Q., Mcgrath, J.E. (2002) Surface properties of fluorinated oxetane polyol modified polyurethane block copolymers. Polymer, 43(25): 7161
Krol, P. (2007) Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Progress in Materials Science, 52(6): 915
Kulesza, K., Pielichowski, K., German, K.J. (2006) Thermal decomposition of bisphenol A-based polyetherurethanes blown with pentane: Part I: Thermal and pyrolytical studies. Journal of Analytical and Applied Pyrolysis, 76(1-2): 243
Kultys, A., Rogulska, M., Pikus, S., Skrzypiec, K. (2009) The synthesis and characterization of new thermoplastic poly(carbonate-urethane) elastomers derived from HDI and aliphatic-aromatic chain extenders. European Polymer Journal, 45(9): 2629
Lazic, N.L., Budinski-Simendic, J.K., Ostojic, S.B., Kicanovic, M.A., Plavsic, M.B. (2007) Effects of nano-structure of silica on dynamic properties of styrene-butadiene rubber
Matsunaga, K., Tajima, M., Yoshida, Y. (2006) Thermal degradation of carboxylate-based polyurethane anionomers. Journal of Applied Polymer Science, 101(1): 573
Mothé, C.G., Araujo, C.R., Wang, S.H. (2009) Thermal and mechanical characteristics of polyurethane/curaua fiber composites. Journal of Thermal Analysis and Calorimetry, 95(1): 181
Schmidt, D., Shah, D., Giannelis, E.P. (2002) New advances in polymer/layered silicate nanocomposites. Current Opinion in Solid State and Materials Science, 6(3): 205
Schmidt, G., Malwitz, M.M. (2003) Properties of polymer-nanoparticle composites. Current Opinion in Colloid & Interface Science, 8(1): 103
Sekkar, V., Narayanaswamy, K., Scariah, K.J., Nair, P.R., Sastri, K.S. (2006) Synthesis and characterization of a novel polyurethane elastomer based on CO2 copolymer. J Appl. Polym. Sci., 101, 2986-2994
Sekkar, V., Bhagwan, S.S., Prabhakaran, N., Rao, M.R., Ninan, K.N. (2000) Polyurethanes based on hydroxyl terminated polybutadiene: Modelling of network parameters and correlation with mechanical properties. Polymer, 41(18): 6773
Seymour, R.W., Cooper, S.L. (1973) Thermal Analysis of Polyurethane Block Polymers. Macromolecules, 6(1): 48
Shen, Z., Simon, G.P., Cheng, Y.B. (2004) Nanocomposites of poly(methyl methacrylate) and organically modified layered silicates by melt intercalation. Journal of Applied Polymer Science, 92(4): 2101
Sinha, R.S., Okamoto, M. (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, 28(11): 1539
Stankowski, M., Kropidłowska, A., Gazda, M., Haponiuk, J.T. (2008) Properties of polyamide 6 and thermoplastic polyurethane blends containing modified montmorillonites. Journal of Thermal Analysis and Calorimetry, 94(3): 817
Strawhecker, K.E., Manias, E. (2000) Structure and Properties of Poly(vinyl alcohol)/Na+ Montmorillonite Nanocomposites. Chemistry of Materials, 12(10): 2943
Špírková, M. (2002) Polyurethane elastomers made from linear polybutadiene diols. Journal of Applied Polymer Science, 85(1): 84
Špírková, M., Matějka, L., Meissner, B., Pytela, J. (2000) Polybutadiene-based polyurethanes with controlled properties: preparation and characterization. Journal of Applied Polymer Science, 77(2): 381
Špírková, M., Strachota, A., Urbanová, M., Baldri, J., Brus, J., Šlouf, M., Kuta, A., Hrdlička, Z. (2009) Structural and Surface Properties of Novel Polyurethane Films. Materials and Manufacturing Processes, 24(10): 1185
Tien, Y.I., Wei, K.H. (2001) High-tensile-property layered silicates/ polyurethane nanocomposites by using reactive silicates and pseudo chain extenders. Macromolecules, 34(26): 9045
Tortora, M., Gorrasi, G., Vittoria, V., Galli, G., Ritrovati, S., Chiellini, E. (2002) Structural characterization and transport properties of organically modified montmorillonite/polyurethane nanocomposites. Polymer, 43(23): 6147
Usuki, A., Kato, M., Okada, A., Kurauchi, T. (1997) Synthesis of polypropylene-clay hybrid. Journal of Applied Polymer Science, 63(1): 137
Utracki, L.A. (2008) Polymeric nanocomposites: Compounding and performance. Journal of Nanoscience and Nanotechnology, 8(4): 1582
Velankar, S., Cooper, S.L. (2000) Microphase separation and rheological properties of polyurethane melts. 2: Effect of block incompatibility on the microstructure. Macromolecules, 33(2): 382
Xie, X.Y., Li, J.H., Zhong, Y.P., He, C.S., Fan, C.R. (2002) Study on structure and performance of polycarbonate urethane synthesized via different copolymerization methods. Polym. Mater. Sci. Eng, 18, 37-42
Xu, B., Huang, W.M., Pei, Y.T., Chen, Z.G., Kraft, A., Reuben, R., i dr. (2009) Mechanical properties of attapulgite clay reinforced polyurethane shape-memory nanocomposites. European Polymer Journal, 45(7): 1904
Yanhong, Z., Zhenyhggbin, X., Huang, H., Chen, H. (2009) Thermal degradation of polyurethane based on IPDI. Journal of Analytical and Applied Pyrolysis, 84(1): 89