|
Reference
|
|
Brudecki, L., Ferguson, D.A., Mccall, C.E., El, G.M. (2012) Myeloid-Derived Suppressor Cells Evolve during Sepsis and Can Enhance or Attenuate the Systemic Inflammatory Response. Infection and Immunity, 80(6): 2026-2034
|
|
Cuenca, A.G., Moldawer, L.L. (2012) Myeloid-derived suppressor cells in sepsis: Friend or foe?. Intensive Care Medicine, 38(6): 928-930
|
1
|
Cuenca, A.G., Delano, M.J., Kelly-Scumpia, K.M., Moreno, C., Scumpia, P.O., Laface, D.M., Heyworth, P.G., Efron, P.A., Moldawer, L.L. (2011) A Paradoxical Role for Myeloid-Derived Suppressor Cells in Sepsis and Trauma. Molecular Medicine, 17(3-4): 281-292
|
|
Darcy, C.J., Minigo, G., Piera, K.A., Davis, J.S., Mcneil, Y.R., Chen, Y., Volkheimer, A.D., Weinberg, J., Anstey, N.M., Woodberry, T. (2014) Neutrophils with myeloid derived suppressor function deplete arginine and constrain T cell function in septic shock patients. Critical Care, 18(4): R163-R163
|
|
Delano, M.J., Scumpia, P.O., Weinstein, J.S., Coco, D., Nagaraj, S., Kelly-Scumpia, K.M., O'malley, K.A., Wynn, J.L., Antonenko, S., Al-Quran, S.Z., Swan, R., Chung, C., Atkinson, M.A., Ramphal, R. (2007) MyD88-dependent expansion of an immature GR-1+CD11b+ population induces T cell suppression and Th2 polarization in sepsis. Journal of Experimental Medicine, 204(6): 1463-1474
|
|
Delano, M.J., Thayer, T., Gabrilovich, S., Kelly-Scumpia, K.M., Winfield, R.D., Scumpia, P.O., Cuenca, A.G., Warner, E., Wallet, S.M., Wallet, M.A., O'malley, K.A., Ramphal, R., Clare-Salzer, M. (2011) Sepsis Induces Early Alterations in Innate Immunity That Impact Mortality to Secondary Infection. Journal of Immunology, 186(1): 195-202
|
|
Derive, M., Bouazza, Y., Alauzet, C., Gibot, S. (2012) Myeloid-derived suppressor cells control microbial sepsis. Intensive Care Medicine, 38(6): 1040-1049
|
4
|
Đorđević, D., Pejović, J., Šurbatović, M., Jevđić, J., Radaković, S., Veljović, M., Perić, A., Anđelić, T., Popović, N. (2015) Prognostic value and daily trend of interleukin-6, neutrophil CD64 expression, C-reactive protein and lipopolysaccharide-binding protein in critically ill patients: Reliable predictors of outcome or not?. Journal of Medical Biochemistry, vol. 34, br. 4, str. 431-439
|
2
|
Gabrilovich, D.I., Nagaraj, S. (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews Immunology, 9(3): 162-174
|
|
Gentile, L.F., Cuenca, A.G., Efron, P.A., Ang, D., Bihorac, A., Mckinley, B.A., et al. (2012) Persistent inflammation and immunosuppression: A common syndrome and new horizon for surgical intensive care. J Trauma Acute Care Surg, 72(6): 1491-501
|
|
Goenka, A., Kollmann, T.R. (2015) Development of immunity in early life. Journal of Infection, 71(1): S112-S120
|
1
|
Hotchkiss, R.S., Moldawer, L.L. (2014) Parallels between Cancer and Infectious Disease. New England Journal of Medicine, 371(4): 380-383
|
|
Hotchkiss, R.S., Monneret, G., Payen, D. (2013) Sepsis-induced immunosuppression: From cellular dysfunctions to immunotherapy. Nature Reviews Immunology, 13(12): 862-874
|
|
Hotchkiss, R.S., Monneret, G., Payen, D. (2013) Immunosuppression in sepsis: A novel understanding of the disorder and a new therapeutic approach. Lancet Infectious Diseases, 13(3): 260-268
|
1
|
Jordan, K.R., Amaria, R.N., Ramirez, O., Callihan, E.B., Gao, D., Borakove, M., Manthey, E., Borges, V.F., Mccarter, M.D. (2013) Myeloid-derived suppressor cells are associated with disease progression and decreased overall survival in advanced-stage melanoma patients. Cancer immunology, immunotherapy, 62(11): 1711-22
|
18
|
Knaus, W.A., Draper, E.A., Wagner, D.P., Zimmerman, J.E. (1985) APACHE II: A severity of disease classification system. Crit Care Med, 13(10): 818-847
|
|
Lai, D., Qin, C., Shu, Q. (2014) Myeloid-Derived Suppressor Cells in Sepsis. BioMed Research International, 2014: 598654
|
3
|
le Gall, J.R., Lemeshow, S., Saulnier, F. (1993) A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA, 270(24): 2957-63
|
|
Mathias, B., Delmas, A.L., Ozrazgat-Baslanti, T., Vanzant, E.L., Szpila, B.E., Mohr, A.M., Moore, F.A., Brakenridge, S.C., Brumback, B.A., Moldawer, L.L., Efron, P.A. (2017) Human Myeloid-derived Suppressor Cells are Associated with Chronic Immune Suppression After Severe Sepsis/Septic Shock. Annals of Surgery, 265(4): 827-834
|
|
Moreno, R., Vincent, J.L., Matos, R., Mendonça, A., Cantraine, F., Thijs, L., Takala, J., Sprung, C., Antonelli, M., Bruining, H., Willatts, S. (1999) The use of maximum SOFA score to quantify organ dysfunction/failure in intensive care: Results of a prospective, multicentre study. Intensive care medicine, 25(7): 686-96
|
|
Nagaraj, S., Collazo, M., Corzo, C.A., Youn, J.I., Ortiz, M., Quiceno, D., Gabrilovich, D.I. (2009) Regulatory Myeloid Suppressor Cells in Health and Disease. Cancer Research, 69(19): 7503-7506
|
|
Ray, A., Chakraborty, K., Ray, P. (2013) Immunosuppressive MDSCs induced by TLR signaling during infection and role in resolution of inflammation. Frontiers in Cellular and Infection Microbiology, 3: 52-52
|
3
|
Rhodes, A., Evans, L.E., Alhazzani, W., Levy, M.M., Antonelli, M., Ferrer, R., et al. (2017) Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med, 43(3): 304-77
|
|
Rodrigues, J.C., Gonzalez, G.C., Zhang, L., Ibrahim, G., Kelly, J.J., Gustafson, M.P., Lin, Y., Dietz, A.B., Forsyth, P.A., Yong, W.V., Parney, I.F. (2010) Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressor cell-like properties. Neuro-Oncology, 12(4): 351-365
|
|
Rodriguez, P.C., Ernstoff, M.S., Hernandez, C., Atkins, M., Zabaleta, J., Sierra, R., Ochoa, A.C. (2009) Arginase I-Producing Myeloid-Derived Suppressor Cells in Renal Cell Carcinoma Are a Subpopulation of Activated Granulocytes. Cancer Research, 69(4): 1553-1560
|
|
Sagiv, J.Y., Michaeli, J., Assi, S., Mishalian, I., Kisos, H., Levy, L., Damti, P., Lumbroso, D., Polyansky, L., Sionov, R.V., Ariel, A., Hovav, A., Henke, E., Fridlender, Z.G., Granot, Z. (2015) Phenotypic Diversity and Plasticity in Circulating Neutrophil Subpopulations in Cancer. Cell Reports, 10(4): 562-573
|
|
Sander, L.E., Sackett, S.D., Dierssen, U., Beraza, N., Linke, R.P., Müller, M., Blander, M.J., Tacke, F., Trautwein, C. (2010) Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function. Journal of Experimental Medicine, 207(7): 1453-1464
|
|
Schmielau, J., Finn, O.J. (2001) Activated granulocytes and granulocytederived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res, 61(12): 4756-60
|
|
Shankar-Hari, M., Deutschman, C.S., Singer, M. (2015) Do we need a new definition of sepsis?. Intensive Care Medicine, 41(5): 909-911
|
1
|
Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., Bellomo, R., Bernard, G.R., Chiche, J., Coopersmith, C.M., Hotchkiss, R.S., Levy, M.M., Marshall, J.C. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315(8): 801-10
|
|
Stanojević, I., Miller, K., Kandolf-Sekulović, L., Mijušković, Ž., Zolotarevski, L., Jović, M., Gašević, M., Đukić, M., Arsenijević, N., Vojvodić, D. (2016) A subpopulation that may correspond to granulocytic myeloid-derived suppressor cells reflects the clinical stage and progression of cutaneous melanoma. International Immunology, 28(2): 87-97
|
1
|
Šurbatović, M., Veljović, M., Jevđić, J., Popović, N., Đorđević, D., Radaković, S. (2013) Immunoinflammatory Response in Critically Ill Patients: Severe Sepsis and/or Trauma. Mediators Inflamm, 2013: 362793
|
|
Šurbatović, M., Radaković, S. (2013) Tumor necrosis factor-a levels early in severe acute pancreatitis: Is there predictive value regarding severity and outcome?. J Clin Gastroenterol, 47(7): 637-43
|
|
Uhel, F., Azzaoui, I., Grégoire, M., Pangault, C., Dulong, J., Tadié, J.M., Gacouin, A., Camus, C., Cynober, L., Fest, T., Le, T.Y., Roussel, M., Tarte, K. (2017) Early Expansion of Circulating Granulocytic Myeloid-derived Suppressor Cells Predicts Development of Nosocomial Infections in Patients with Sepsis. American Journal of Respiratory and Critical Care Medicine, 196(3): 315-327
|
|
Veglia, F., Perego, M., Gabrilovich, D. (2018) Myeloid-derived suppressor cells coming of age. Nature Immunology, 19(2): 108-119
|
|
Youn, J.I., Gabrilovich, D.I. (2010) The biology of myeloid-derived suppressor cells: The blessing and the curse of morphological and functional heterogeneity. European Journal of Immunology, 40(11): 2969-2975
|
|
Young, M.R., Newby, M., Wepsic, H.T. (1987) Hematopoiesis and suppressor bone marrow cells in mice bearing large metastatic Lewis lung carcinoma tumors. Cancer Res, 47(1): 100-105
|
|
Zhu, X., Pribis, J.P., Rodriguez, P.C., Morris, S.M.Jr., Vodovotz, Y., Billiar, T.R., Ochoa, J.B. (2014) The Central Role of Arginine Catabolism in T-Cell Dysfunction and Increased Susceptibility to Infection After Physical Injury. Annals of Surgery, 259(1): 171-178
|
|
|
|