Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:7
  • preuzimanja u poslednjih 30 dana:5
članak: 2 od 13  
Back povratak na rezultate
FME Transactions
2020, vol. 48, br. 3, str. 581-587
jezik rada: engleski
vrsta rada: neklasifikovan
objavljeno: 24/06/2020
doi: 10.5937/fme2003581T
Creative Commons License 4.0
Poboljšani postupak kompokastinga za dobijanje jednoliko dispergovane višezidne ugljenične nanocevi u rastopu legure AA2219
aCHRIST (Deemed to be University), Department of Mechanical and Automobile Engineering, Bangalore, India
bDayananda Sagar College of Engineering, Department of Mechanical Engineering, Bangalore, India
cDavanegere University, Department of Studies in Physics, India

e-adresa: vijay.tambrallimath@gmail.com

Sažetak

Transfer tehnologije predstavlja najveći izazov današnjice za ekonomičnu masovnu proizvodnju. Proizvodnja materijala male težine i velike čvrstoće sa nano-ugljeničnim ojačanjem dobija na značaju u istraživanjima. Istraživači navode da su postigli poboljšanje svojstva ojačanja kod jednoliko dispergovane višezidne ugljenične nanocevi (MWCNT). Ali efikasno korišćenje ovog svojstva i dalje predstavlja izazov iako je to najjači materijal na svetu. Postizanje homogene disperzije naročito u rastopljenom metalu je složen zadatak. U tom cilju je primenjen Nov pristup za dobijanje jednolike disperzije. Izvršena je analiza različitih mehaničkih i metalurških karakteristika. Prečišćenost zrna i njegova struktura su utvrđeni pomoću optičkog mikroskopa, disperzija i strukturno oštećenje MWCNT pomoću FESM, a fazne promene i reakcije tokom izlivanja korišćenjem XRD skenera. Primenom navedenog metoda postignuto je poboljšanje od 23,7% odnosno 69,75% kod tvrdoće i pritisne jačine dodavanjem MWCNT.

Ključne reči

Reference

Abbasipour, B., et al. (2010) Compocasting of A356 CNT composite. Transactions of Nonferrous Metals Society of China, 20, 1561-1566
Abou, B.E.T.A., Osman, T.A., Khattab, A., Azzam, B., Zaki, M. (2014) Microstructure and Mechanical Properties of MWCNTs Reinforced A356 Aluminum Alloys Cast Nanocomposites Fabricated by Using a Combination of Rheocasting and Squeeze Casting Techniques. Journal of Nanomaterials, Hindawi Publishing Corporation, Volume 2014, Article ID 386370, 14 pages
Agarwal, A., Bakshi, S.R., Debrupa, L. (2010) Carbon nanotubes reinforced metal matrix composites. New York, USA: Taylor and Francis Group - CRC Press
Agarwal, M., Srivastava, R. (2016) Influence of solid fraction casting on microstructure of aluminum alloy 6061. Materials and manufacturing processes, 3, 1958-1967
Barekar, N.S., Dhindaw, B.K. (2014) Twin-roll casting of aluminum alloys: An overview. Materials and manufacturing processes, 29, 651-661
Cho, S., Kikuchi, K., Miyazaki, T., Takagi, K., Kawasaki, A., Tsukada, T. (2010) Multiwalled carbon nanotubes as a contributing reinforcement phase for the improvement of thermal conductivity in copper matrix composites. Scripta Materialia, 63(4): 375-378
Collot, J. (2001) Review of new process technologies in the aluminum die-casting industry. Materials and manufacturing processes, 16(5), 595-617
Fukunaga, H. (1988) Processing aspects of squeeze casting for short fiber reinforced metal matrix composites. Advanced Materials and Manufacturing Processes, 3(4): 669-687
Ghandvar, H., Farahany, S., Idris, J. (2015) Wettability enhancement of SiCp in cast A356/SiCp composite using semisolid process. Materials and manufacturing processes, 30, 1442-1449
Giridhar, V., Arunraj, R.S., Dhisondhar, R. (2013) Ultrasonic nano-dispersion technique of aluminium alloy and carbon-nano-tubes (CNT) for automotive parts applications. International Journal of Engineering and Technical Research, 1(7), 54-60
Goulart, P.R., Osório, W.R., Spinelli, J.E., Garcia, A. (2007) Dendritic microstructure affecting mechanical properties and corrosion resistance of an Al-9 wt% Si alloy. Materials and Manufacturing Processes, 22(3): 328-332
Hassan, J., Mohd, H.I., Ali, O. (2013) A review of ceramic shell investment casting of magnesium alloys and mold-metal reaction suppression. Materials and manufacturing processes, 28, 843-856
Hu, Q., Zhao, H., Li, F. (2016) Effects of manufacturing processes on microstructure and properties of Al/A356-B4C composites. Materials and Manufacturing Processes, 31(10): 1292-1300
Jiang, W., Guan, F., Li, G., Jiang, H., Zhu, J., Fan, Z. (2019) Processing of Al/Cu bimetal via a novel compoundcasting method. Materials and manufacturing processes, [Online early access], published online: May 14
Kaplan, M., İleriturk, M., Balalan, Z. (2008) Relationship between microstructure, hardness, XRD, TGDTA analysis, and wear performance of a cast ZA alloy. Materials and Manufacturing Processes, 23(4): 400-406
Ko, S.Y., Kim, B.Y., Kim, Y.I., Kim, T.Y., Kim, K.T., Mckay, B.J., Shin, J.S. (2013) Manufacture of CNTs-Al powder precursors for casting of CNTs-Al matrix composites. Materials Science Forum, 765: 353-357
Kumar, S.M., Dhindaw, B.K. (2007) Magnesium alloy-SiC preinforced infiltrated cast composites. Materials and manufacturing processes, 22, 429-432
Li, Q., Rottmair, A. C., Singer, R.F. (2010) CNT reinforced light metal composites produced by melt stirring and by high pressure die casting. Composites Science and Technology, 70(16): 2242-2247
Liu, G., Tao, J., Li, F., Bao, R., Liu, Y., Li, C., Yi, J. (2019) Optimizing the interface bonding in Cu matrix composites by using functionalized carbon nanotubes and cold rolling. Journal of Materials Research, 34(15): 2600-2608
Lu, Y., Li, J., Yang, J., Li, X. (2016) The fabrication and properties of the squeeze-cast TiN/AL composites. Materials and manufacturing processes, 31, 1306-1310
Mansoor, M., Shahid, M. (2016) Carbon nanotube-reinforced aluminum composite produced by induction melting. Journal of Applied Research and Technology, 14(4): 215-224
Noguchi, T., Asano, K., Hiratsuka, S., Miyahara, H. (2008) Trends of composite casting technology and joining technology for castings in Japan. International Journal of Cast Metals Research, 21(1-4): 219-225
Nourbakhsh, S., Margolin, H. (1996) Processing and characterization of fiber reinforced intermetallic matrix composites. Materials and Manufacturing Processes, 11(2): 283-305
Okayasu, M., Yoshifuji, S., Mizuno, M., Hitomi, M., Yamazaki, H. (2009) Comparison of mechanical properties of die cast aluminium alloys: Cold v. hot chamber die casting and high v. low speed filling die casting. International Journal of Cast Metals Research, 22(5): 374-381
Salam, M.A., Burk, R. (2017) Synthesis and characterization of multi-walled carbon nanotubes modified with octadecylamine and polyethylene glycol. Arabian Journal of Chemistry, 10: S921-S927, supplement 1, February
Shi, C., Wu, G., Zhang, L., Zhang, X. (2018) Al-5.5Mg-1.5Li-0.5Zn-0.07Sc-0.07Zr alloy produced by gravity casting and heat treatment processing. Materials and manufacturing processes, 33(8), 891-897
Thomas, S., Umasankar, V. (2019) Review of recent progress in the development and properties of aluminum metal matrix composites reinforced with multiwalled carbon nanotube by powder metallurgy route. Materials Performance and Characterization, 8(3): 20180140-20180140 [online early access], published online: May 14
Thomas, S., Umasankar, V. (2018) Effect of MWCNT reinforcement on the precipitation-hardening behavior of AA2219. International Journal of Minerals, Metallurgy, and Materials, 25(1): 53-61
Umasankar, V., Thomas, S. (2018) Influence of manufacturing process on distribution of MWCNT in aluminium alloy matrix and its effect on microhardness. Materials Science Forum, 928: 32-37
Vishwanath, K., Raji, G., Shakiba, A., Murthy, K.V. S. (2018) Mechanical properties of copper nanocomposites reinforced with uncoated and nickel coated carbon nanotubes. FME Transactions, vol. 46, br. 4, str. 623-630
Zeng, X., Zhou, G.H., Xu, Q., Xiong, Y., Luo, C., Wu, J. (2010) A new technique for dispersion of carbon nanotube in a metal melt. Materials Science and Engineering: A, 527(20): 5335-5340
Zhao, P., Guo, S., Liu, G., Chen, Y., Li, J. (2014) Study of a new method to fabricate W-Cu composites. Materials and Manufacturing Processes, 29(4): 408-411
Zhou, W., Bang, S., Kurita, H., Miyazaki, T., Fan, Y., Kawasaki, A. (2016) Interface and interfacial reactions in multi-walled carbon nanotube-reinforced aluminum matrix composites. Carbon, 96: 919-928