Metrika članka

  • citati u SCindeksu: [2]
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:3
  • preuzimanja u poslednjih 30 dana:3
članak: 4 od 13  
Back povratak na rezultate
FME Transactions
2018, vol. 46, br. 4, str. 623-630
jezik rada: engleski
vrsta rada: neklasifikovan
objavljeno: 06/09/2018
doi: 10.5937/fmet1804623K
Creative Commons License 4.0
Mehanička svojstva nanokompozita na bazi bakra ojačanih neobloženim i niklom obloženim ugljeničnim nanocevima
aRamaiah Institute of Technology, Department of Mechanical Engineering, Bengaluru, India
bUniversity of Tehran, School of Metallurgy and Materials Engineering, Iran
cGovernment Engineering College, Department of Mechanical Engineering, Ramanagar, India

e-adresa: vkoti675@gmail.com

Sažetak

Ugljenične nanocevi su se pojavile kao potencijalni materijal za ojačavanje metalnih matrica 1991. godine kada ih je pronašao japanski naučnik Sumio Ijima. Ugljenične nanocevi imaju multifunkcionalna svojstva i idealan su materijal za ojačavanje metalnih matrica. U radu se prikazuje razvoj ugljeničnih nanocevi sa višeslojnim zidovima ojačanim nanokompozitima na bazi čistog komercijalnog bakra. Sadržaj ugljeničnih nanocevi varirao je od 0,25 do 1,0 težinskih % u nanokompozitima na bazi bakarne matrice. Nanocevi su bile obložene niklom da bi se poboljšalo vezivanje sa bakarnom matricom. U cilju postizanja bolje disperzijenanocevi u bakarnoj matrici oba materijala su bila podvrgnuta ultrasonifikaciji i mešanju u kugličnom mlinu. Sinterovani nanokompoziti su zatim obrađeni sabijanjem, što podrazumeva densifikaciju i istovremenu promenu oblika. U cilju proučavanja disperzije nanocevi analizirana je mikrostruktura pomoću elektronskih mikroskopa za skeniranje i transmisiju. Uticaj ugljeničnih nanocevi na mehanička svojstva kao što su mikrotvrdoća i zatezna čvrstoća nanokompozita na bazibakarne matrice proučen je u pojedinostima.

Ključne reči

Reference

Ajayan, P.M., Schadler, L.S., Braun, P.V. (2006) Nanocomposite Science and Technology. Weinheim: Wileyvch GmbH & Co. KGaA
Beaumont, P.W.R., Soutis, C., Hodzić, A., ur. (2015) Structural integrity and durability of advanced composites: Innovative modelling methods and intelligent design. Cambridge, UK: Elsevier
Claudir, G.K.J., Rúbia, Y.S.Z., Carlos, P.B., Annelise, K.A., Mortari, R.S., Pavlović, A. (2018) Production of multi-wall carbon nanotubes starting from a commercial graphite pencil using an electric arc discharge in aqueous medium. FME Transactions, vol. 46, br. 2, str. 151-156
Deng, H., Yi, J., Xia, C., Yi, Y. (2017) Mechanical properties and microstructure characterization of well-dispersed carbon nanotubes reinforced copper matrix composites. Journal of Alloys and Compounds, 727: 260-268
Dinulović, M., Rašuo, B. (2009) Dielectric properties modeling of composite materials. FME Transactions, vol. 37, br. 3, str. 117-122
Dinulović, M., Rašuo, B. (2011) Dielectric modeling of multiphase composites. Composite Structures, 93(12): 3209-3215
George, R., Kashyap, K.T., Rahul, R., Dilip, S. (2007) Synthesis and characterization of carbon nanotubes by arc discharge method. J. Inst. Eng. India, Vol. 88, pp. 23. 26
George, R., Kashyap, K.T., Rahul, R., Yamdagni, S. (2005) Strengthening in carbon nanotube/aluminium (CNT/Al) composites. Scripta Materialia, 53(10): 1159-1163
Harris, P.J. (2009) Carbon nanotube science. New York: Cambridge University Press
Kashyap, K.T., Puneeth, K., Ram, A., Koppad, Praveenath.G. (2012) Ageing Kinetics in Carbon Nanotube Reinforced Aluminium Alloy AA6063. Materials Science Forum, 710: 780-785
Kim, K.T., Cha, S.I., Hong, S.H., Hong, S.H. (2006) Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites. Materials Science and Engineering: A, 430(1-2): 27-33
Koppad, P.G., Kashyap, K.T., Shrathinth, V., Shetty, T.A., Koppad, R.G. (2013) Microstructure and microhardness of carbon nanotube reinforced copper nanocomposites. Materials Science and Technology, 29(5): 605-609
Koppad, P.G., Aniruddha, R.H.R., Kashyap, K.T. (2013) On shear-lag and thermal mismatch model in multiwalled carbon nanotube/copper matrix nanocomposites. Journal of Alloys and Compounds, 549: 82-87
Koppad, P.G., Ram, H., Ramesh, C.S., Kashyap, K.T., Koppad, R.G. (2013) On thermal and electrical properties of multiwalled carbon nanotubes/copper matrix nanocomposites. Journal of Alloys and Compounds, 580: 527-532
Koppad, P.G., Singh, V.K., Ramesh, C.S., Koppad, R.G., Kashyap, K.T. (2013) Metal Matrix Nanocomposites Reinforced with Carbon Nanotubes. u: Tiwari, Ashutosh; Shukla, S.K. [ur.] Advanced Carbon Materials and Technology, Hoboken, NJ, USA: Wiley, str. 331-376
Lu, J.P. (1997) Elastic Properties of Carbon Nanotubes and Nanoropes. Physical Review Letters, 79(7): 1297-1300
Mallikarjuna, H.M., Ramesh, C.S., Koppad, P.G., Keshavamurthy, R., Kashyap, K.T. (2016) Effect of carbon nanotube and silicon carbide on microstructure and dry sliding wear behavior of copper hybrid nanocomposites. Transactions of Nonferrous Metals Society of China, 26(12): 3170-3182
Mallikarjuna, H.M., Kashyap, K.T., Koppad, P.G., Ramesh, C.S., Keshavamurthy, R. (2016) Microstructure and dry sliding wear behavior of Cu-Sn alloy reinforced with multiwalled carbon nanotubes. Transactions of Nonferrous Metals Society of China, 26(7): 1755-1764
Overney, G., Zhong, W., Tom, nek D. (1993) Structural rigidity and low frequency vibrational modes of long carbon tubules. Zeitschrift fur Physik D Atoms, Molecules and Clusters, 27(1): 93-96
Pradeep, K.G.S., Koppad, P.G., Keshavamurthy, R., Alipour, M. (2017) Microstructure and mechanical behaviour of in situ fabricated AA6061-TiC metal matrix composites. Archives of Civil and Mechanical Engineering, 17(3): 535-544
Qianming, G., Dan, L., Zhi, L., Xiao-Su, Y., Ji, L. (2008) Tribology properties of carbon nanotube-reinforced composites. u: Tribology and Interface Engineering Series, Elsevier BV, str. 245-267
Rahul, M.R., Keshavamurthy, R., Koppad, P.G., Prakash, C.P.S. (2015) Mechanical characteristics of copper-TiB2 composite synthesised by in-situ reaction. Int. J. Appl. Eng. Res, Vol. 10, pp. 3803-3806
Ram, H., Koppad, Praveennath.G., Kashyap, K.T. (2013) Nanoindentation studies on MWCNT/aluminum alloy 6061 nanocomposites. Materials Science and Engineering: A, 559: 920-923
Shivananda, M.K.V., Girish, D.P., Keshavamurthy, R., Varol, T., Koppad, P.G. (2017) Mechanical and thermal properties of AA7075/TiO 2 /Fly ash hybrid composites obtained by hot forging. Progress in Natural Science: Materials International, 27(4): 474-481
Treacy, M.M., Ebbensen, T.W., Gibson, J.M. (1996) Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature, 381(6584): 678
Tu, J.P., Yang, Y.Z., Wang, L.Y., Ma, X.C., Zhang, X.B. (2001) Tribological properties of carbon-nanotubereinforced copper composites. Tribology Letters, 10(4): 225-228