Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:5
  • preuzimanja u poslednjih 30 dana:3
članak: 9 od 13  
Back povratak na rezultate
Hemijska industrija
2010, vol. 64, br. 6, str. 473-489
jezik rada: srpski
vrsta rada: naučni članak
objavljeno: 01/02/2011
doi: 10.2298/HEMIND100923059D
Uticaj načina sinteze poli(metil metakrilata) u prisustvu površinski modifikovanih TiO2 nanočestica na svojstva dobijenih nanokompozita
aUniverzitet u Beogradu, Tehnološko-metalurški fakultet
bUniverzitet u Beogradu, Institut za nuklearne nauke Vinča, Beograd-Vinča
cUniverzitet u Beogradu, Institut za hemiju, tehnologiju i metalurgiju - IHTM

e-adresa: edzunuzovic@tmf.bg.ac.rs

Projekat

Projekat Ministarstva nauke Republike Srbije, br. 142066 i 142023

Sažetak

Predmet ovog rada je dobijanje i karakterizacija nanokompozita kod kojih polimernu matricu čini poli(metil metakrilat) (PMMA), a kao neorgansko punilo nanočestice titan-dioksida. Svi uzorci nanokompozita dobijeni su in situ polimerizacijom preko slobodnih radikala metil metakrilata (MMA) u prisustvu čestica punila. Površinska modifikacija korišćenih nanočestica titan-dioksida izvršena je palmitatom askorbinske kiseline. Uzorci nanokompozita su pripremljeni polimerizacijom metil metakrilata u rastvoru, u masi i suspenzionom polimerizacijom. Određene su vrednosti molarne mase PMMA ekstrahovanog iz kompozitnih uzoraka i dobijeno je da su one manje od vrednosti molarne mase čistog PMMA dobijenog na isti način, na osnovu čega se može zaključiti da nanočestice TiO2-PAA prisutne u toku polimerizacije u sva tri slučaja utiču na reakcije terminacije i dovode do smanjenja molarne mase PMMA matrice. Diferencijalnom skenirajućom kalorimetrijom i termogravimetrijskom analizom utvrđeno je i da način sinteze polimerne matrice i koncentracija čestica punila utiču na termička svojstva dobijenih polimernih nanokompozita.

Ključne reči

nanokompoziti; poli-(metil metakrilat); TiO2; radikalna polimerizacija

Reference

Ash, B.J., Schadler, L.S., Siegel, R.W. (2002) Glass transition behavior of alumina/polymethylmethacrylate nanocomposites. Materials Letters, 55(1-2): 83-87
Beecroft, L.L., Ober, C.K. (1997) Nanocomposite materials for optical application. Chemistry of Materials, 9(6): 1302-1317
Bhimaraj, P., Yang, H., Siegel, R.W., Schadler, L.S. (2007) Crystal nucleation and growth in poly(ethylene terephthalate)/alumina-nanoparticle composites. Journal of Applied Polymer Science, 106(6): 4233-4240
Caris, C.H.M., Kuijpers, R.P.M., van Herk, A.M., German, A.L. (1990) Kinetics of (co)polymerization at the surface of inorganic submicron particles in emulsion-like systems. u: Macromol. Chem. Macromol. Symp, 35/36 535-548
Caris, C.H.M., van Elven, L.P.M., van Herk, A.M., German, A.L. (1989) Polymerization of MMA at the surface of inorganic submicron particles. British Polymer Journal, 21(2): 133-140
Chen, L.X., Rajh, T., Jeger, W., Nedeljkovic, J., Thurnauer, M.C. (1999) X-ray absorption reveals surface structure of titanium dioxide nanoparticles. Journal of Synchrotron Radiation, 6(3): 445-447
Chen, X. (2002) Preparation and property of TiO2 nanoparticle dispersed polyvinyl alcohol composite materials. Journal of Materials Science Letters, 21(21): 1637-1639
Dalsin, J.L., Lin, L., Tosatti, S., Vörös, J., Textor, M., Messersmith, P.B. (2005) Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA. Langmuir, 21(2): 640-6
de Oliveira, A.M., da Silva, M.L.C.P., Alves, G.M., de Oliveira, P.C., dos Santos, A.M. (2005) Encapsulation of TiO2 by emulsion polymerization with methyl metacrylate (MMA). Polymer Bulletin, 55(6): 477-484
du Jianxin,, Wang, J., Su, S., Wilkie, C.A. (2004) Additional XPS studies on the degradation of poly(methyl methacrylate) and polystyrene nanocomposites. Polymer Degradation and Stability, 83(1): 29-34
Dzunuzovic, E.S., Jeremic, K.B., Nedeljkovic, J.M. (2007) In situ radical polymerization of methyl methacrylate in a solution of surface modified TiO2 and nanoparticles
Dzunuzovic, E.S., Marinovic-Cincovic, M.T., Vukovic, J.V., Jeremic, K.B., Nedeljkovic, J.M. (2009) Thermal Properties of PMMA/TiO2 Nanocomposites Prepared by In-Situ Bulk Polymerization
Đoković, V.A., Nedeljković, J.M. (2000) Stress relaxation in hematite nanoparticles-polystyrene composites. Macromolecular rapid communications, vol. 21, br. 14, str. 994-997
el Fray, M., Boccaccini, A.R. (2005) Novel hybrid PET/DFA-TiO2 nanocomposites by in situ polycondensation. Materials Letters, 59(18): 2300-2304
Erdem, B., Sudol, E., Dimonie, V.L., El-Aasser, M.S. (2000) Encapsulation of inorganic particles via miniemulsion polymerization: I: Dispersion of titanium dioxide particles in organic media using OLOA 370 as stabilizer. Journal of Polymer Science Part A: Polymer Chemistry, 38(24): 4419-4430
Erdem, B., Sudol, E., Dimonie, V.L., El-Aasser, M.S. (2000) Encapsulation of inorganic particles via miniemulsion polymerization: II: Preparation and characterization of styrene miniemulsion droplets containing TiO2 particles. Journal of Polymer Science Part A: Polymer Chemistry, 38(24): 4431-4440
Erdem, B., Sudol, E., Dimonie, V.L., El-Aasser, M.S. (2000) Encapsulation of inorganic particles via miniemulsion polymerization: III: Characterization of encapsulation. Journal of Polymer Science Part A: Polymer Chemistry, 38(24): 4441-4450
Gangopadhyay, R., de Amitabha (2000) Conducting polymer nanocomposites: A brief overview. Chemistry of Materials, 12(3): 608-622
Gnauck, M., Jaehne, E., Blaettler, T., Tosatti, S., Textor, M., Adler, H.P. (2007) Carboxy-Terminated Oligo(ethylene glycol)-Alkane Phosphate: Synthesis and Self-Assembly on Titanium Oxide Surfaces. Langmuir, 23(2): 377-381
Godovsky, D.Y. (2000) Device applications of polymer nanocomposites. Advan. Polym. Sci, 153, 163-205
Granick, S., Kumar, S.K., Amis, E.J., Antonietti, M., Balazs, A.C., Chakraborty, A.K., Grest, G.S., Hawker, C., Janmey, P., Kramer, E.J., Nuzzo, R., Russell, T.P., Safinya, C.R. (2003) Macromolecules at surfaces: Research challenges and opportunities from tribology to biology. Journal of Polymer Science Part B: Polymer Physics, 41(22): 2755-2793
Hamming, L.M., Qiao, R., Messersmith, P.B., Catherine, B.L. (2009) Effects of dispersion and interfacial modification on the macroscale properties of TiO2 polymer-matrix nanocomposites. Composites Science and Technology, 69(11-12): 1880-1886
Hirata, T., Kashiwagi, T., Brown, J.E. (1985) Thermal and oxidative degradation of polymethyl methacrylate: Weight loss. Macromolecules, 18 (7): 1410
Kashiwagi, T., Hirata, T., Brown, J.E. (1985) Thermal and oxidative degradation of poly(methyl methacrylate) molecular weight. Macromolecules, 18(2): 131
Kashiwagi, T., Inabi, A., Brown, J.E., Hatada, K., Kitayama, T., Masuda, E. (1986) Effects of weak linkages on the thermal and oxidative degradation of poly(methyl methacrylates). Macromolecules, 19(8): 2160
Katsikas, L., Velicković, J.S., Weller, H., Popović, I.G. (1997) Thermogravimetric characterisation of poly(methyl methacrylate) photopolymerised by colloidal cadmium sulphide. Journal of Thermal Analysis, 49(1): 317-323
Khaled, S.M., Sui, R., Charpentier, P.A., Rizkalla, A.S. (2007) Synthesis of TiO(2)-PMMA nanocomposite: using methacrylic acid as a coupling agent. Langmuir, 23(7): 3988-95
Kobayashi, M., Matsuno, R., Otsuka, H., Takahara, A. (2006) Precise surface structure control of inorganic solid and metal oxide nanoparticles through surface-initiated radical polymerization. Science and Technology of Advanced Materials, 7(7): 617-628
Koziej, D., Fischer, F., Kränzlin, N., Caseri, W.R., Niederberger, M. (2009) Nonaqueous TiO2 nanoparticle synthesis: A versatile basis for the fabrication of self-supporting, transparent, and UV-absorbing composite films. ACS applied materials & interfaces, 1(5): 1097-104
Kubo, I., Masuoka, N., Xiao, P., Haraguchi, H. (2002) Antioxidant activity of dodecyl gallate. Journal of agricultural and food chemistry, 50(12): 3533-9
Kuljanin, J., Marinovic-Cincovic, S., Zec, S., Comor, M.I., Nedeljkovic, J.M. (2003) Influence of Fe2O3-filler on the thermal properties of polystyrene
Laachachi, A., Leroy, E., Cochez, M., Ferriol, M., Lopezcuesta, J. (2005) Use of oxide nanoparticles and organoclays to improve thermal stability and fire retardancy of poly(methyl methacrylate). Polymer Degradation and Stability, 89(2): 344-352
Laachachi, A., Cochez, M., Leroy, E., Ferriol, M., Lopezcuesta, J. (2007) Fire retardant systems in poly(methyl methacrylate): Interactions between metal oxide nanoparticles and phosphinates. Polymer Degradation and Stability, 92(1): 61-69
Laachachi, A., Cochez, M., Ferriol, M., Lopezcuesta, J., Leroy, E. (2005) Influence of TiO and FeO fillers on the thermal properties of poly(methyl methacrylate) (PMMA). Materials Letters, 59(1): 36-39
Lee, L., Chen, W. (2001) High-Refractive-Index Thin Films Prepared from Trialkoxysilane-Capped Poly(methyl methacrylate)-Titania Materials. Chemistry of Materials, 13(3): 1137-1142
Mammeri, F., Rozes, L., Bourhis, E., Sanchez, C. (2006) Elaboration and mechanical characterization of nanocomposites thin filmsPart II. Correlation between structure and mechanical properties of SiO2-PMMA hybrid materials. Journal of the European Ceramic Society, 26(3): 267-272
Marinovic-Cincovic, M., Popovic, M.C., Novakovic, M.M., Nedeljkovic, J.M. (2007) The influence of beta-FeOOH nanorods on the thermal stability of poly (methyl methacrylate)
Marinović-Cincović, M., Šaponjić, Z., Đoković, V., Milonjić, S., Nedeljković, J. (2006) The influence of hematite nano-crystals on the thermal stability of polystyrene. Polymer Degradation and Stability, 91(2): 313-316
Matsuda, T. (2006) Photoiniferter-driven precision surface graft microarchitectures for biomedical applications. Adv. Polym. Sci, 197 67-106
Matsuno, R., Yamamoto, K., Otsuka, H., Takahara, A. (2003) Polystyrene-Grafted Magnetite Nanoparticles Prepared through Surface-Initiated Nitroxyl-Mediated Radical Polymerization. Chemistry of Materials, 15(1): 3-5
McNamee, C.E., Tsujii, Y., Matsumoto, M. (2005) Physicochemical characterization of an anatase TiO2 surface and the adsorption of a nonionic surfactant: An atomic force microscopy study. Langmuir, 21(24): 11283-8
Park, B.J., Sung, J.H., Kim, K.S., Chin, I., Choi, H.J. (2006) Preparation and Characterization of Poly(Methyl Methacrylate) Coated TiO2 Nanoparticles. J Macromol. Sci. Part B: Phys., 45: 53-60
Paul, D.R., Robeson, L.M. (2008) Polymer nanotechnology: Nanocomposites. Polymer, 49(15): 3187-3204
Peterson, J.D., Vyazovkin, S., Wight, C.A. (1999) Kinetic Study of Stabilizing Effect of Oxygen on Thermal Degradation of Poly(methyl methacrylate). Journal of Physical Chemistry B, 103(38): 8087-8092
Popovic, I.G., Katsikas, L., Weller, H., Schruter, S., Veličković, J.S. (1993) Polymerization studies: The application of differential thermogravimetric analysis. Journal of Applied Polymer Science, 50(8): 1475-1482
Popović, I.G., Katsikas, L., Muller, U., Veličković, J.S., Weller, H. (1994) The homogeneous photopolymerization of methyl methacrylate by colloidal cadmium sulfide. Macromolecular Chemistry and Physics, 195(3): 889-904
Rajh, T., Nedeljkovic, J.M., Chen, L.X., Poluektov, O., Thurnauer, M.C. (1999) Improving optical and charge separation properties of nanocrystalline TiO2 by surface modification with vitamin C. Journal of Physical Chemistry B, 103(18): 3515-3519
Rittigstein, P., Torkelson, J.M. (2006) Polymer-Nanoparticle Interfacial Interactions in Polymer Nanocomposites: Confinement Effects on Glass Transition Temperature and Suppression of Physical Aging. Journal of Polymer Science Part B: Polymer Physics, 44(20): 2935-2943
Sharma, R.K., Bhatnagar, M.C., Sharma, G.L. (1998) Mechanism in Nb doped titania oxygen gas sensor. Sensors and Actuators B: Chemical, 46(3): 194-201
Starodoubtsev, S.G., Saenko, E.V., Khokhlov, A.R., Volkov, V.V., Dembo, K.A., Klechkovskaya, V.V., Shtykova, E.V., Zanaveskina, I.S. (2003) Poly(acrylamide) gels with embedded magnetite nanoparticles. Microelectronic Engineering, 69(2-4): 324-329
Tao, W., Fei, F., Yue-Chuan, W. (2006) Structure and thermal properties of titanium dioxide-polyacrylate nanocomposites. Polymer Bulletin, 56(4-5): 413-426
Thostenson, E., Li, C., Chou, T. (2005) Nanocomposites in context. Composites Science and Technology, 65(3-4): 491-516
Vračar, L., Despić, A., Dražić, V., Zečević, S., Jeremić, K., Jovanović, D., Jovanović, S., Maksimović, M., Nikolić, B.G., Ovcin, D., Šepa, D. (2004) Eksperimentalna fizička hemija. Beograd: Tehnološko-metalurški fakultet Univerziteta
Weng, C.C., Wei, K.H. (2003) Selective Distribution of Surface- Modified TiO2 Nanoparticles in Polystyrene-b-poly (Methyl Methacrylate) Diblock Copolymer. Chemistry of Materials, 15(15): 2936-2941
Wu, W., Wagner, M.H., Xu, Z. (2003) Surface treatment mechanism of nano-SiO2 and the properties of PP/nano-SiO2 composite materials. Colloid and Polymer Science, 281(6): 550-555
Wu, X., Wang, D., Yang, S.J. (2000) Preparation and characterization of stearate-capped titanium dioxide nanoparticles. Journal of Colloid and Interface Science, 222(1): 37-40
Yang, M., Dan, Y. (2005) Preparation and characterization of poly(methyl methacrylate)/titanium oxide composite particles. Colloid and Polymer Science, 284(3): 243-250
Yaoxing, H., Xinsheng, M., Hongming, C., Haiyuing, Z., Qiufang, W. (2004) Morphological study and thermal analysis of surface modified α-FeOOH via in situ polymerization of methyl methacrylate. Mater. Res. Bull, 39, 1159-1166
Yuwono, A.H., Liu, B., Xue, J., Wang, J., Elim, H.I., Ji, W., Li, Y., White, T.J. (2004) Controlling the crystallinity and nonlinear optical properties of transparent TiO2-PMMA nanohybrids. Journal of Materials Chemistry, 14(20): 2978
Zan, L., Tian, L., Liu, Z., Peng, Z. (2004) A new polystyrene-TiO2 nanocomposite film and its photocatalytic degradation. Applied Catalysis A: General, 264(2): 237-242