Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:1
  • preuzimanja u poslednjih 30 dana:1
članak: 5 od 33  
Back povratak na rezultate
Ekonomski pogledi
2015, vol. 17, br. 2, str. 123-137
jezik rada: engleski
vrsta rada: stručni članak
doi:10.5937/EkoPog1502123M
Improving business helpdesk systems with intelligent search mechanisms
(naslov ne postoji na srpskom)
aTechnical College of Applied Studies in Kragujevac, Kragujevac
bUniverzitet u Nišu, Ekonomski fakultet
cVTSSS Zvecan

e-adresa: vladam.kg@outlook.com

Sažetak

Savremeni poslovni informacioni sistemi uveliko koriste inteligentne alate za otkrivanje, prepoznavanje i predviđanje novog znanja. Oblast primene ovakvih sistema je ogromna i skoro da ne postoji oblast industrije i usluga u kojoj primena ovakvih sistema nije zastupljena. Cilj razvoja ovakvih sistema jeste obezbeđivanje potpuno funkcionalne klase informacionih sistema koja će imati mogućnost nadogradnje bez potrebe za intervencijom od strane razvojnog softverskog tima. Rad predlaže inteligentno softversko rešenje kao među-fazu u razvoju idealnog softverskog rešenja sposobnog za samostalno održavanje. Posebno će biti istaknuto da metodologija, po kojoj je prototip poslovnog softverskog rešenja razvijen, predstavlja validnu osnovu za razvoj softverskih rešenja za brojna područja industrije i usluga.

Ključne reči

osiguranje; pravilo; baza znanja; inteligentni sistem; HelpDesk; neuronske mreže

Reference

Béchet, N., Chauché, J., Prince, V., Roche, M. (2014) How to combine text-mining methods to validate induced Verb-Object relations?. Computer Science and Information Systems, 11(1): 133-155
Cibran, M.A. (2007) Connecting high-level business ruleswith object-oriented applications: An approach using aspect-oriented programming and model-driven engineering. Uitgever VUBPRESS
Codington, S., Wilson, T.D. (1994) Information system strategies in the UK Insurance Industry. International Journal of Information Management, 14(3): 188-203
Daniels, H., van Dissel, H. (2002) Risk management based on expert rules and data-mining: A case study in insurance. u: ECIS 2002 - 6-8. June, Gdańsk, Poland
Medina-Santiago, A., Camas-Anzueto, J.L., Vazquez-Feijoo, J.A., Hernández-de, L.H.R., Mota-Grajales, R. (2014) Neural Control System in Obstacle Avoidance in Mobile Robots Using Ultrasonic Sensors. Journal of Applied Research and Technology, 12(1): 104-110
Nalepa, G., Bobek, S. (2014) Rule-based solution for context-aware reasoning on mobile devices. Computer Science and Information Systems, 11(1): 171-193
Rivera-Mejía, J., Léon-Rubio, A.G., Arzabala-Contreras, E. (2012) PID Based on a Single Artificial Neural Network Algorithm for Intelligent Sensors. Journal of Applied Research and Technology, 10(2):
Rodríguez-González, A., Torres-Niño, J., Domingo, J., Gomez-Berbis, M.J., Alor-Hernandez, G. (2012) AKNOBAS: A knowledge-based segmentation recommender system based on intelligent data mining techniques. Computer Science and Information Systems / ComSIS, vol. 9, br. 2, str. 713-740
SAS (2012) Combating insurance claims fraud: How to recognize and reduce opportunistic and organized claims fraud. u: SAS White Paper
Stankić, R., Milićević, V., Popović, M., Savić, Z. (2012) Contribution to intelligent system for automatic management of business rules development. TTEM, Vol. 7, 1
Torpey, D. (2011) Fraud in insurance on rise - survey 2010-2011. Ernst & Young
Yeremia (2013) Genetic algorithm and neural network for optical character recognition. Journal of Computer Science, 9(11): 1435-1442