
References

3

Agresti, A. (1990) Categorical data analysis. New York: Wiley


Beliakov, G., Kelarev, A., Yearwood, J. (2012) Robust artificial neural networks and outlier detection. Technical report. 1069(2012) arxiv.org/pdf/1110.pdf (pristupljeno: 28112012)

1

Bobrowski, L., Łukaszuk, T. (2011) Relaxed linear separability (RLS) approach to feature (gene) subset selection. in: Xia X. [ed.] Selected works in bioinformatics, Rijeka: InTech, 103118

1

Brandl, B., Keber, C., Schuster, M.G. (2006) An automated econometric decision support system: forecasts for foreign exchange trades. Central European Journal of Operations Research, 14(4): 401415


Briner, R.B., Denyer, D., Rousseau, D.M. (2009) Evidence, based management. Concept cleanup time?. Academy of Management Perspectives, 23(4): 1932


Buonaccorsi, J.P. (2010) Measurement error. models, methods, and applications. Boca Raton: Chapman & Hall/CRC


Chae, S.S., Kim, C., Kim, J., Warde, W.D. (2008) Cluster analysis using different correlation coefficients. Statistical Papers, 49(4): 715727


Chen, D.S., Jain, R.C. (1994) A robust backpropagation learning algorithm for function approximation. IEEE Transactions on Neural Networks, 5(3): 467479


Christmann, A. (1994) Least median of weighted squares in logistic regression with large strata. Biometrika, 81(2): 413417


Čížek, P. (2011) Semiparametrically weighted robust estimation of regression models. Computational Statistics & Data Analysis, 55(1): 774788


Čížek, P. (2008) Robust and efficient adaptive estimation of binarychoice regression models. Journal of the American Statistical Association, 103(482): 687696


Davies, L.P., Gather, U. (2005) Breakdown and groups. Annals of Statistics, 33(3): 9771035


Dreiseitl, S., OhnoMachado, L. (2002) Logistic regression and artificial neural network classification models: a methodology review. Journal of biomedical informatics, 35(56): 3529


DuttMazumder, A., Button, C., Robins, A., Bartlett, R. (2011) Neural network modelling and dynamical system theory: are they relevant to study the governing dynamics of association football players?. Sports medicine (Auckland, N.Z.), 41(12): 100317


Efendigil, T., Önüt, S., Kahraman, C. (2009) A decision support system for demand forecasting with artificial support networks and neuro, fuzzy models. A comparative analysis. Expert Systems with Applications, 36(3): 66976707

1

Fayyad, U., Shapiro, G.P., Smyth, P. (1996) From data mining to knowledge discovery in databases. AI Magazine, 17(3): 3754

1

Fernandez, G. (2003) Data mining using SAS applications. Boca Raton: Chapman & Hall/CRC


Gao, J., Hitchcock, D.B. (2010) James, Stein shrinkage to improve k, means cluster analysis. Computational Statistics & Data Analysis, (54): 21132127


García,, Escudero, L.A., Gordaliza, A., Martín, S.R., van Aelst, S., Zamar, R. (2009) Robust linear clustering. Journal of the Royal Statistical Society Series BStatistical Methodology, 71(1): 301318


Gruca, T.S., Klemz, B.R., Petersen, A.F.E. (1999) Mining sales data using a neural network model of market response. ACM SIGKDD Explorations Newsletter, 1(1): 3943


Gunasekaran, A., Ngai, E.W.T. (2012) Decision support systems for logistic and supply chain management. Decision Support Systems and Electronic Commerce, 52(4): 777778


Hakimpoor, H., Arshad, K.A.B., Tat, H.H., Khani, N., Rahmandoust, M. (2011) Artificial neural networks' applications in management. World Applied Sciences Journal, 14(7): 10081019


Hand, D.J. (2006) Classifier Technology and the Illusion of Progress. Statistical Science, 21(1): 114


Hastie, T., Tibshirani, R., Friedman, J. (2001) The elements of statistical learning: Data mining, inference, and prediction. New York: Springer


Hekimoglu, S., Erenoglu, R.C., Kalina, J. (2009) Outlier detection by means of robust regression estimators for use in engineering science. Journal of Zhejiang University: Science A, 10(6): 909921


Jaakkola, T.S. (2013) Machine learning. www.ai.mit.edu/courses/6.867,f04/lectures/ lecture,5,ho.pdf (pristupljeno: 04012013)

1

Jeng, J.T., Chuang, C.T., Chuang, C.C. (2011) Least trimmed squares based CPBUM neural networks. in: Proceedings International Conference on System Science and Engineering ICSSE 2011, Washington: IEEE Computer Society Press, 187192

1

Kalina, J. (2012) Implicitly weighted methods in robust image analysis. Journal of Mathematical Imaging and Vision, 44(3): 449462

2

Kalina, J. (2012) On multivariate methods in robust econometrics. Prague Economic Papers, 21(1): 6982


Kalina, J. (2011) Some diagnostic tools in robust econometrics. Acta Universitatis Palackianae Olomucensis Facultas Rerum Naturalium Mathematica, 50(2): 5567


Krycha, K.A., Wagner, U. (1999) Applications of artificial neural networks in management science. A survey. Journal of Retailing and Consumer Services, (6): 185203


Liang, K. (2005) Clustering as a basis of hedge fund manager selection. Technical report. Berkeley: University of California, cmfutsarchive/HedgeFunds/hf_managerselection.pdf (pristupljeno: 20122012)


Liano, K. (1996) Robust error measure for supervised neural network learning with outliers. IEEE Transactions on Neural Networks, 7(1): 246250


Maronna, R.A., Martin, R.D., Yohai, V.J. (2006) Robust statistics. Theory and methods. Chichester: Wiley

2

Martinez, W.L., Martinez, A.R., Solka, J.L. (2011) Exploratory data analysis with MATLAB. London: Chapman & Hall/CRC


Mura, L. (2012) Possible applications of the cluster analysis in the managerial business analysis. Information Bulletin of the Czech Statistical Society, 23(4): 2740

1

Murtaza, N., Sattar, A.R., Mustafa, T. (2005) Enhancing the software effort estimation using outlier elimination methods for agriculture in Pakistan. Pakistan Journal of Life and Social Sciences, 8(1): 5458

1

Nisbet, R., Elder, J., Miner, G. (2009) Handbook of statistical analysis and data mining applications. Burlington: Elsevier


Punj, G., Stewart, D.W. (1983) Cluster Analysis in Marketing Research: Review and Suggestions for Application. Journal of Marketing Research, 20(2): 134


Ritchie, M.D., Hahn, L.W., Roodi, N., Bailey, L.R., Dupont, W.D., Parl, F.F., Moore, J.H. (2001) Multifactordimensionality reduction reveals highorder interactions among estrogenmetabolism genes in sporadic breast cancer. American Journal of Human Genetics, 69(1): 13847

1

Rousseeuw, P.J., Driessen, K. (2006) Computing LTS Regression for Large Data Sets. Data Mining and Knowledge Discovery, 12(1): 2945


Rusiecki, A. (2008) Robust MCD, based backpropagation learning algorithm. in: Rutkowski L.; Tadeusiewicz R.; Zadeh L.; Zurada J. [ed.] Artificial Intelligence and Soft Computing. Lecture Notes in Computer Science, 5097, 154163


SalibianBarrera, M. (2006) The Asymptotics of MMEstimators for Linear Regression with Fixed Designs. Metrika, 63(3): 283294


Schafer, J., Strimmer, K. (2005) A shrinkage approach to largescale covariance matrix estimation and implications for functional genomics. Statistical Applications in Genomics and Molecular Biology, 4(1): 130

2

Seber, F.A.G., Wild, J.C. (1989) Nonlinear Regression. New York: John Wiley & Sons


Shertzer, K.W., Prager, M.H. (2002) Least median of squares. A suitable objective function for stock assessment models?. Canadian Journal of Fisheries and Aquatic Sciences, (59): 14741481


Shin, S., Yang, L., Park, K., Choi, Y. (2009) Robust data mining. An integrated approach. in: Ponce J.; Karahoca A. [ed.] Data mining and knowledge discovery in real life applications. I, New York: Tech Education and Publishing


Soda, P., Pechenizkiy, M., Tortorella, F., Tsymbal, A. (2010) Knowledge discovery and computerbased decision support in biomedicine. Artificial Intelligence in Medicine, 50(1): 12


Stigler, S.M. (2010) The changing history of robustness. American Statistician, 64(4): 277281


Svozil, D., Kalina, J., Omelka, M., Schneider, B. (2008) DNA conformations and their sequence preferences. Nucleic Acids Research, 36(11): 3690706

1

Tibshirani, R., Walther, G., Hastie, T. (2001) Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(2): 411423


Vintr, T., Vintrová, V., Řezanková, H. (2012) Poisson distribution based initialization for fuzzy clustering. Neural Network World, 22(2): 139159


Víšek, J.Á. (2001) Regression with high breakdown point. in: Antoch J.; Dohnal G. [ed.] Proceedings of ROBUST 2000, School of JČMF, Prague: JČMF and Czech Statistical Society, 324356


Yeung, D.S., Cloete, I., Shi, D., Ng, W.W.Y. (2010) Sensitivity analysis for neural networks. New York: Springer

1

Youden, W.J. (1950) Index for rating diagnostic tests. Cancer, 3(1): 325


Zvárová, J., Veselý, A., Vajda, I. (2009) Data, information and knowledge. in: Berka P.; Rauch J.; Zighed D. [ed.] Data mining and medical knowledge management. Cases and applications standards. IGI Global, Hershey, 136



