Metrika članka

  • citati u SCindeksu: [1]
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:5
  • preuzimanja u poslednjih 30 dana:0
članak: 10 od 31  
Back povratak na rezultate
Chemical Industry and Chemical Engineering Quarterly / CICEQ
2012, vol. 18, br. 2, str. 171-178
jezik rada: engleski
vrsta rada: naučni članak
objavljeno: 22/03/2013
doi: 10.2298/CICEQ110826059A
Uticaj različitih parametara na sonohemijsku sintezu nanokristalnih čestica TiO2
Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

Sažetak

Nanokristalni TiO2 je pripreman ultrazvučnom metodom. TiO2 je dobijen hidrolizom tetra-izopropil-titanata (TIPT) u dejonizujućoj vodi i etanolu pod uticajem ultrazvučnog zračenja (24 KHz, 300 W/cm2) u različitim uslovima. Korišćenjem dizajn eksperimenta (DOE) ispitan je uticaj sadržaja vode, odnosa voda-TIPT, voda-etanol i vremena sonikacije na veličinu čestice TiO2. Sadržaj vode, odnos voda-TIPT, voda-etanol i vreme sonikacije su varirani u rasponu od 100-150 ml, 50-75% v/v, 20-30% v/v i 3-4 h, respektivno. Veličina čestica TiO2 je analizirana pomoću odgovarajućeg analizatora. Rezultati DOE pokazuju da sadržaj vode ima najveći uticaj na veličinu čestica TiO2.

Ključne reči

ultrazvuk; parametri; nanokristalni TiO2; veliþina þestice; Taguchi metoda

Reference

Abedini, R., Mousavi, S.M., Aminzadeh, R. (2011) A novel cellulose acetate (CA) membrane using TiO2 nanoparticles: Preparation, characterization and permeation study. Desalination, 277(1-3): 40-45
Campbell, T., Parker, S.C., Starr, D.E. (2002) The Effect of Size-Dependent Nanoparticle Energetics on Catalyst Sintering. Science, 298(5594): 811-814
Cheng, H., Ma, J., Zhao, Z., Qi, L. (1995) Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles. Chemistry of Materials, 7(4): 663-671
Dong, L.F., Cui, Z.L., Zhang, Z.K. (1997) Gas sensing properties of nano-ZnO prepared by arc plasma method. Nanostructured Materials, 8(7): 815-823
Emerich, D.F., Thanos, C.G. (2003) Nanotechnology and medicine. Expert Opinion on Biological Therapy, 3(4): 655-663
Ghasemian, S., Rezaei, K., Abedini, R., Poorazarang, H. (2011) Chem. Eng. Res. Bull., 15: 39-44
Ghasemian, S., Rezaei, K., Abedini, R., Poorazarang, H., Ghaziani, F. (2011) J. Food. Sci. Technol, doi: 10.1007//s13197-011-0514-x
Ghasemian, S., Rezaei, K., Abedini, R., Poorazarang, H. (2012) J. Nat.Sci. Sustain Tech, 6 :1-15
Gonzalez, R.J., Zallen, R., Berger, H. (1997) Phys. Rev. B, 55, 7014
Jiang, X., Herricks, T., Xia, Y. (2003) Monodispersed Spherical Colloids of Titania: Synthesis, Characterization, and Crystallization. Advanced Materials, 15(14): 1205-1209
Kavan, L., Gratzel, M., Rathousky, J., Zukal, A. (1996) Nanocrystalline TiO[sub 2] (Anatase) Electrodes: Surface Morphology, Adsorption, and Electrochemical Properties. Journal of The Electrochemical Society, 143(2): 394
Lin, T.Y., Tseng, C.H. (2000) Optimum design for artificial neural networks: An example in a bicycle derailleur system. Engineering Applications of Artificial Intelligence, 13(1): 3-14
Masters, I., Khoei, A.R., Gethin, D.T. (1999) Vienna
Mazdiyasni, K.S., Lynch, C.T., Smith, J.S. (1965) Preparation of Ultra-High-Purity Submicron Refractory Oxides. Journal of the American Ceramic Society, 48(7): 372-375
Neppolian, B., Wang, Q., Jung, H., Choi, H. (2008) Ultrasonic-assisted sol-gel method of preparation of TiO2 nano-particles: Characterization, properties and 4-chlorophenol removal application. Ultrasonics sonochemistry, 15(4): 649-58
Pan, Z.W., Dai, Z.R., Wang, Z.L. (2001) Nanobelts of semiconducting oxides. Science, 291(5510): 1947-9
Panpae, K., Angkaew, S., Sritara, C., Ngernsuttichaiporn, C. (2007) Kaset. J. Nat. Sci., 41, 178- 85
Peres-Durand, S., Rouviere, J., Guizard, C. (1995) Sol-gel processing of titania using reverse micellar systems as reaction media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 98(3): 251-270
Qian, Y., Chen, Q., Chen, Z., Fan, C., Zhou, G. (1993) Preparation of ultrafine powders of TiO2 by hydrothermal H2O2 oxidation starting from metallic Ti. Journal of Materials Chemistry, 3(2): 203
Rahmanian, B., Pakizeh, M., Mansoori, S.A.A., Abedini, R. (2011) Application of experimental design approach and artificial neural network (ANN) for the determination of potential micellar-enhanced ultrafiltration process. Journal of hazardous materials, 187(1-3): 67-74
Samuneva, B., Kozhukharov, V., Trapalis, Ch., Kranold, R. (1993) Sol-gel processing of titanium-containing thin coatings. Journal of Materials Science, 28(9): 2353-2360
Taguchi, G. (1995) Quality engineering (Taguchi methods) for the development of electronic circuit technology. IEEE Transactions on Reliability, 44(2): 225-229
Tan, K.K., Tang, K.Z. (2001) Vehicle dispatching system based on Taguchi-tuned fuzzy rules. European Journal of Operational Research, 128(3): 545-557
Tang, Z., Kotov, N.A., Giersig, M. (2002) Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science, 297(5579): 237-40
Trung, T., Ha, C. (2004) One-component solution system to prepare nanometric anatase TiO2. Materials Science and Engineering: C, 24(1-2): 19-22
Wang, W., Gu, B., Liang, L., Hamilton, W.A., Wesolowski, D.J. (2004) J. Phys. Chem. B, B 108: 14789-14792
Ward, D.A., Ko, E.I. (1995) Preparing catalytic materials by the sol-gel method. Industrial and Engineering Chemistry Research, 34, 421
Wu, L., Yu, J.C., Zhang, L., Wang, X., Ho, W. (2004) Preparation of a highly active nanocrystalline TiO2 photocatalyst from titanium oxo cluster precursor. Journal of Solid State Chemistry, 177(7): 2584-2590
Xia, X.H., Luo, Y.S., Wang, Z., Liang, Y., Fan, J., Jia, Z.J., Chen, Z.H. (2007) Ultrasonic synthesis and photocatalytic activity investigation of TiO2 nanoarrays. Materials Letters, 61(11-12): 2571-2574
Yoon, T.S., Li, Y., Cho, W.S., Koo, E.S., Kim, C.O. (2002) J. Mater. Sci., 13: 101-104
Yu, J., Zhou, M., Cheng, B., Yu, H., Zhao, X. (2005) Ultrasonic preparation of mesoporous titanium dioxide nanocrystalline photocatalysts and evaluation of photocatalytic activity. Journal of Molecular Catalysis A: Chemical, 227(1-2): 75-80