Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:115
  • preuzimanja u poslednjih 30 dana:57
članak: 1 od 32  
Back povratak na rezultate
Vojnosanitetski pregled
2020, vol. 77, br. 2, str. 165-173
jezik rada: engleski
vrsta rada: izvorni naučni članak
doi:10.2298/VSP171213055M
Creative Commons License 4.0
Efekti akutno i subhronično primenjenog DL-metionina na markere oksidativnog stresa u plazmi i aktivnost acetilholinesteraze u tkivu srca pacova
aMinistry of Defence, Military Health Department, Belgrade
bUniverzitet u Beogradu, Medicinski fakultet
cUniverzitet u Prištini (Kosovska Mitrovica), Medicinski fakultet
dUniversity of Manitoba, St. Boniface Hospital Research Center, Institute of Cardiovascular Sciences, Winnipeg, Canada
eUniverzitet u Beogradu, Institut za nuklearne nauke Vinča
fUniversity of Belgrade, Faculty of Medicine, Institute of Medical Chemistry
gUniverzitet u Beogradu, Medicinski fakultet, KBC 'Dr Dragiša Mišović'
hUniversity of Kragujevac, Faculty of Medical Sciences, Department of Physiology
iUniversity of Kragujevac, Faculty of Medical Sciences, Department of Physiology + IM Sechenov First Moscow State Medical University, Department of Human Pathology, Moscow, Russia

e-adresa: drdjuric@eunet.rs

Projekat

Efekti homocisteina i homocisteinu srodnih supstanci na kardiovaskularni sistem: Uloga gasnih transmitera NO, H2S I CO (MPNTR - 175043)

Sažetak

Uvod/Cilj. Hronično indukovana hipermetioninemija dovodi do hiperhomocisteinemije koja izaziva oksidativni stress, aterogenezu, neurodegeneraciju i karcinome. Međutim, malo se zna o efektima akutne i subhronične primene DLmetionina (Met). Cilj ovog istraživanja bila je procena efekata akutno i subhronično primenjenog Met na parametre oksidativnog stresa u plazmi pacova [enzime: katalaza (CAT), glutation peroksidaza (GPx), superoksid dismutaza (SOD) i indeks lipidne peroksidacije, malondialdehid (MDA)] i na aktivnost acetilholinesteraze (AChE) u tkivu srca pacova. Metode. Aktivnosti enzima, kao i koncentracija MDA mereni su nakon akutne (n = 8) i subhronične (n = 10) primene Met (i.p. 0,8 mmoL/kg u jednoj dozi u akutnom eksperimentu ili svakodnevno tokom tri nedelje u subhroničnom eksperimentu). Isti način tretmana je bio primenjen i u kontrolnoj grupi, ali su životinje bile tretirane fiziološkim rastvorom [i.p. 1 mL 0,9% NaCl (n = 8) u akutnom i 0,1-0,2 mL 0,9% NaCl svakodnevno tokom tri nedelje (n = 10), u subhroničnom eksperimentu]. Testirani parametri su mereni 60 min nakon aplikacije supstanci u akutnim eksperimentima i nakon tri nedelje tretmana u subhroničnim eksperimentima. Rezultati. Nije bilo razlike u vrednostima homocisteina između grupe tretirane Met tokom tri nedelje i kontrolne grupe. Primena Met značajno je povećala aktivnost CAT i GPx nakon 1h u poređenju sa kontrolnom grupom (p = 0,008 za oba enzima), dok je aktivnost SOD i koncentracija MDA bila nepromenjena. Subhronično primenjen Met nije uticao na aktivnost antioksidativnih enzima, ni na koncentraciju MDA u plazmi. Aktivnost AChE u srčanom tkivu pacova nije se menjala nakon 1 h, ali je bila značajno smanjena nakon subhroničnog tretmana (p = 0,041). Zaključak. Rezultati istraživanja pokazuju da Met različito utiče na ispitivane parametre tokom akutne i hronične primene. Posle akutne primene Met mobiliše veći deo antioksidativnih enzima, dok se tokom subhroničnog tretmana ove promene gube. Nasuprot tome, akutna primena Met ne utiče na aktivnost AChE, dok duže trajanje metioninskog opterećenja smanjuje funkciju ovog enzima. Ovi nalazi ukazuju na to da metionin može da interferira sa antioksidativnim sistemom zaštite i holinergičkom kontrolom funkcije srca.

Ključne reči

Reference

Akkaya, H., Kilic, E., Eyuboglu, D.S., Yilmaz, B. (2014) Postacute effects of kisspeptin-10 on neuronal injury induced byl-methionine in rats. Journal of Biochemical and Molecular Toxicology, 28(8), 373-377
Anand, P., Singh, B. (2013) A review on cholinesterase inhibitors for Alzheimer's disease. Archives of Pharmacal Research, 36(4), 375-399
Antoniades, C., Tousoulis, D., Marinou, K., Vasiliadou, C., Tentolouris, C., Bouras, G., Pitsavos, C., Stefanadis, C. (2006) Asymmetrical dimethylarginine regulates endothelial function in methionine-induced but not in chronic homocystinemia in humans: Effect of oxidative stress and proinflammatory cytokines. American Journal of Clinical Nutrition, 84(4), 781-788
Aruoma, O.I., Halliwell, B., Laughton, M.J., Quinlan, G.J., Gutteridge, J.M.C. (1989) The mechanism of initiation of lipid peroxidation: Evidence against a requirement for an iron(II)-iron(III) complex. Biochemical Journal, 258(2), 617-620
Azad, M.A.K., Sivanesan, S., Wang, J., Chen, K., Nation, R.L., Thompson, P.E., Roberts, K.D., Velkov, T., Li, J. (2017) Methionine ameliorates polymyxin-induced nephrotoxicity by attenuating cellular oxidative stress. Antimicrobial Agents and Chemotherapy, pii: AAC.01254-17
Beutler, E. (1984) Red cell metabolism, a manual of biochemical methods. New York: Grune & Startton, 3rd ed., 133
Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S., Kalayci, O. (2012) Oxidative stress and antioxidant defense. World Allergy Organization Journal, 5(1), 9-19
Brosnan, J., Brosnan, M. (2006) 5th amino acid assessment workshop: The sulfur containing amino acids: an overview. J Nutr, 136(6), 16365-16405
Costa, M.Z., da Silva, T.M., Flores, N.P., Schmitz, F.P., da Silva, S.E.B., Viau, C.M., Saffi, J., Barschak, A.G., de Souza, W.A.T., Spanevello, R.M. (2013) Methionine and methionine sulfoxide alter parameters of oxidative stress in the liver of young rats: In vitro and in vivo studies. Molecular and Cellular Biochemistry, 384(1-2), 21-28
Den, H.G.J.M., Vegt, E., van der Vijgh, W.J.F., Haenen, G.R.M.M., Bast, A. (2002) Hypochlorous acid is a potent inhibitor of acetylcholinesterase. Toxicology and Applied Pharmacology, 181(3), 228-232
Dvir, H., Silman, I., Harel, M., Rosenberry, T.L., Sussman, J.L. (2010) Acetylcholinesterase: From 3D structure to function. Chemico-Biological Interactions, 187(1-3), 10-22
Ellman, G.L., Courtney, K., Andres, V., Featherstone, R.M. (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88-90
Eriksson, S., Prigge, J.R., Talago, E.A., Arnér, E.S.J., Schmidt, E.E. (2015) Dietary methionine can sustain cytosolic redox homeostasis in the mouse liver. Nature Communications, 6(1), 6479-6479
Garlick, P.J. (2006) 5th amino acid assessment workshop: Toxicity of methionine in humans. J Nutr, (22), 1722-1725
Hanratty, C.G., Mcgrath, L.T., Mcauley, D.F., Young, I.S., Johnston, G.D. (2001) The effects of oral methionine and homocysteine on endothelial function. Heart, 85(3), 326-330
Kim, G., Weiss, S.J., Levine, R.L. (2014) Methionine oxidation and reduction in proteins. Biochimica et Biophysica Acta (BBA) - General Subjects, 1840(2), 901-905
Klingman, G.I. (1969) The distribution of acetylcholinesterase in sympathetic ganglia of immunosympathectomized rats. J Pharmacol Exp Ther, 173(1), 205-211
Kornjača, D., Živković, V., Krstić, D., Čolović, M., Đurić, M., Stanković, S., i dr. (2018) The effects of acute hyperhomocysteinemia induced by DL-homocysteine or DL-homocysteine thiolactone on serum biochemical parameters, plasma antioxidant enzyme and cardiac acetylcholinesterase activities in the rat. Archives of Biological Sciences, 70(2), 241-248
Kučera, M., Hrabovská, A. (2015) Cholinergic system of the heart. Ceska a Slovenska Farmacie, 64(6), 254-263
Liu, H., Wu, J., Yao, J.Y., Wang, H., Li, S.T. (2017) The role of oxidative stress in decreased acetylcholinesterase activity at the neuromuscular junction of the diaphragm during sepsis. Oxidative Medicine and Cellular Longevity, 2017, 9718615
Liu, H., McPherson, B.C., Zhu, X., da Costa, M.L.A., Jeevanandam, V., Yao, Z. (2001) Role of nitric oxide and protein kinase C in ACh-induced cardioprotection. American Journal of Physiology-Heart and Circulatory Physiology, 281(1), H191-H197
Lynch, S.M., Strain, J.J. (1989) Increased hepatic lipid peroxidation with methionine toxicity in the rat. Free Radical Research Communications, 5(4-5), 221-226
Ma, S.C., Hao, Y.J., Jiao, Y., Wang, Y.H., Xu, L.B., Mao, C.Y., Yang, X., Yang, A., Tian, J., Zhang, M., Jin, S., Xu, H.B., Jiang, Y., Zhang, H. (2017) Homocysteine-induced oxidative stress through TLR4/NF-cB/DNMT1-mediated LOX-1 DNA methylation in endothelial cells. Molecular Medicine Reports, 16(6), 9181-9188
McAuley, D.F., McAuley, D.F., Hanratty, C.G., McGurk, C., Nugent, A.G., Johnston, D.G. (1999) Effect of methionine supplementation on endothelial function, plasma homocysteine, and lipid peroxidation. Journal of Toxicology: Clinical Toxicology, 37(4), 435-440
Micović, Ž., Stamenković, A., Nikolić, T., Stojanović, M., Šcepanović, L., Hadžibegović, A., Obrenović, R., Vujošević, I., Stanković, S., Đurić, M., Jakovljević, B., Đurić, D. (2016) The effects of subchronic methionine overload administered alone or simultaneously with L-cysteine or N-acetyl-L-cysteine on body weight, homocysteine levels and biochemical parameters in the blood of male Wistar rats. Serbian Journal of Experimental and Clinical Research, vol. 17, br. 3, str. 215-223
Milatovic, D., Gupta, R.C., Aschner, M. (2006) Anticholinesterase toxicity and oxidative stress. Scientific World Journal, 6, 295-310
Misra, H.P., Fridovich, I. (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem, 247(10), 3170-3175
Mori, N., Hirayama, K. (2000) Long-term consumption of a methionine-supplemented diet increases iron and lipid peroxide levels in rat liver. Journal of Nutrition, 130(9), 2349-2355
Motonori, A., Rajesh, K., Yoshihiko, K., Dongmei, Z., Fumiyasu, Y., Kazuyo, M. (2005) Efferent vagal nerve stimulation protects heart against ischemia-induced arrhythmias by preserving connexin 43 protein. Circulation, 112, 164-170
Nikolić, T., Živković, V., Srejović, I., Stojić, I., Jeremić, N., Jeremić, J., i dr. (2018) Effects of atorvastatin and simvastatin on oxidative stress in diet-induced hyperhomocysteinemia in Wistar albino rats: A comparative study. Molecular and Cellular Biochemistry, 437(1-2), 109-118
Pajares, M.A., Pérez-Sala, D. (2018) Mammalian sulfur amino acid metabolism: A nexus between redox regulation, nutrition, epigenetics, and detoxification. Antioxidants & Redox Signaling, 29(4), 408-452
Pérez-Miguelsanz, J., Vallecillo, N., Garrido, F., Reytor, E., Pérez-Sala, D., Pajares, M.A. (2017) Betaine homocysteine S-methyltransferase emerges as a new player of the nuclear methionine cycle. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1864(7), 1165-1182
Remppis, A., Scheffold, T., Greten, J., Haass, M., Greten, T., Kübler, W., Katus, H.A. (1995) Intracellular compartmentation of troponin T: Release kinetics after global ischemia and calcium paradox in the isolated perfused rat heart. Journal of Molecular and Cellular Cardiology, 27(2), 793-803
Robin, S., Courderot-Masuyer, C., Nicod, L., Jacqueson, A., Richert, L., Berthelot, A. (2004) Opposite effect of methionine-supplemented diet, a model of hyperhomocysteinemia, on plasma and liver antioxidant status in normotensive and spontaneously hypertensive rats. Journal of Nutritional Biochemistry, 15(2), 80-89
Selhub, J., Troen, A.M. (2016) Sulfur amino acids and atherosclerosis: A role for excess dietary methionine. Annals of the New York Academy of Sciences, 1363(1), 18-25
Seneviratne, C.K., Li, T., Khaper, N., Singal, P.K. (1999) Effects of methionine on endogenous antioxidants in the heart. American Journal of Physiology-Heart and Circulatory Physiology, 277(6), H2124-H2128
Silman, I., Sussman, J.L. (2017) Recent developments in structural studies on acetylcholinesterase. Journal of Neurochemistry, 142(2), 19-25
Slyshenkov, V.S., Shevalye, A.A., Liopo, A.V., Wojtczak, L. (2002) Protective role of L-methionine against free radical damage of rat brain synaptosomes. Acta Biochimica Polonica, 49(4), 907-916
Soares, M.S.P., Viau, C.M., Saffi, J., Costa, M.Z., da Silva, T.M., Oliveira, P.S., i dr. (2017) Acute administration of methionine and/or methionine sulfoxide impairs redox status and induces apoptosis in rat cerebral cortex. Metabolic Brain Disease, 32(5), 1693-1703
Stefanello, F.M., Scherer, E.B.S., Kurek, A.G., Mattos, C.B., Wyse, A.T.S. (2007) Effect of hypermethioninemia on some parameters of oxidative stress and on Na+,K+-ATPase activity in hippocampus of rats. Metabolic Brain Disease, 22(2), 172-182
Stojanović, M., Todorović, D., Šćepanović, Lj., Mitrović, D., Borozan, S., Dragutinović, V., Labudović-Borović, M., Krstić, D., Čolović, M., Djuric, D. (2018) Subchronic methionine load induces oxidative stress and provokes biochemical and histological changes in the rat liver tissue. Molecular and Cellular Biochemistry, 448(1-2), 43-50
Troen, A.M., Lutgens, E., Smith, D.E., Rosenberg, I.H., Selhub, J. (2003) The atherogenic effect of excess methionine intake. Proceedings of the National Academy of Sciences, 100(25), 15089-15094
van der Griend, R., Haas, F.J.L.M., Duran, M., Biesma, D.H., Meuwissen, O.J.A.T.H., Banga, J.D. (1998) Methionine loading test is necessary for detection of hyperhomocysteinemia. Journal of Laboratory and Clinical Medicine, 132(1), 67-72
Ventura, P., Panini, R., Verlato, C., Scarpetta, G., Salvioli, G. (2000) Peroxidation indices and total antioxidant capacity in plasma during hyperhomocysteinemia induced by methionine oral loading. Metabolism, 49(2), 225-228
Wendel, A. (1980) Enzymatic basis of detoxication. New York: Academic Press, 333
Yalçinkaya-Demirsöz, S., Depboylu, B., Doru-Abbasolu, S., Ünlüçerçi, Y., Uysal, M. (2009) Effects of high methionine diet on oxidative stress in serum, apo-B containing lipoproteins, heart, and aorta in rabbits. Ann Clin Lab Sci, 39(4), 386-391
Yuan, X., Teng, X., Wang, Y., Yao, Y. (2018) Recipient treatment with acetylcholinesterase inhibitor donepezil attenuates primary graft failure in rats through inhibiting post-transplantational donor heart ischaemia/reperfusion injury. European Journal of Cardio-Thoracic Surgery, 53(2), 400-408