Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:8
  • preuzimanja u poslednjih 30 dana:5

Sadržaj

članak: 6 od 622  
Back povratak na rezultate
2020, vol. 68, br. 5-6, str. 341-353
Analiza stavova računovođa o regulativi primenom Data Mining-a
aUniverzitet u Novom Sadu, Ekonomski fakultet, Katedra za finansijski menadžment i računovodstvo, Subotica
bUniverzitet u Novom Sadu, Ekonomski fakultet, Katedra za poslovnu informatiku, Subotica
Sažetak
Predmet istraživanja u radu jeste procena zakonske i medunarodne računovodstvene regulative u pogledu glavnih nedostataka iz perspektive njihovih korisnika. Identifikacija nedostataka aktuelne računovodstvene regulative važnaje zbog unapređenja zakona u oblasti računovodstva i revizije, čiji nacrti se u trenutku pisanja ovog rada nalaze najavnoj raspravi u Republici Srbiji. Istraživanjeje sprovedeno sa ciljem pružanja odgovora na sledeća istraživačka pitanja: Koji su glavni nedostaci regulative po mišljenju računovođa? Kako se računovođe informišu o računovodstvenoj regulativi? I da li su dva pomenuta istraživačka pitanja povezana? U ovu svrhu, identifikovali smo ciljanu populaciju koja obuhvata racunovode i revizore iz privatnog sektora. Prikupljanje podataka sprovedeno je tokom perioda od šest meseci, nakon kojih su za potrebe istraživanja uzeta u obzir 338 kompletno popunjena upitnika. Prikupljeni podaci analizirani su upotrebom data mining tehnike klasterovanja. Algoritmi za klasterovanje podataka omogucili su segmentaciju anketiranih racunovoda u jasno razdvojene i homogene grupe sličnih racunovoda. Analiza rezultujucih klastera dalaje uvid u mišljenje i stavove sličnih racunovoda. Ovi uvidi predstavljaju osnovu za donošenje zakljucaka o nedostacima zakonske računovodstvene regulative koje uočavaju racunovode u Srbiji i sa kojima se nose u svakodnevnom poslu.
Reference
Argyrou, A., Andreev, A. (2011) A semi-supervised tool for clustering accounting databases with applications to internal controls. Expert Systems with Applications, 38(9): 11176-11181
Arthur, D., Vassilvitskii, S. (2007) K-means++: The advantages of careful seeding. u: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1027-1025
Berkhin, P. (2006) A survey of clustering data mining techniques. u: Grouping multidimensional data, Springer-Verlag, 25-71
Carneiro, J., Rodrigues, L.L., Craig, R. (2017) Assessing international accounting harmonization in Latin America. Accounting Forum, 41(3): 172-184
Cascino, S., Gassen, J. (2015) What drives the comparability effect of mandatory IFRS adoption?. Review of Accounting Studies, 20(1): 242-282
Chand, P., Patel, C. (2008) Convergence and harmonization of accounting standards in the South Pacific region. Advances in Accounting, 24(1): 83-92
Commission, E. (2014) Effects of using International Financial Reporting Standards (IFRS) in the EU: Public consultation. WWW Document, Retrieved in December 2017 from http:// ec.europa.eu/finance/consultations/2014/ifrs/index_en.htm
Croasmun, J.T., Ostrom, L. (2011) Using Likert-type scales in the social sciences. Journal of Adult Education, 40(1): 19-22
de Franco, G., Kothari, S.P., Verdi, R.S. (2011) The benefits of financial statement comparability. Journal of Accounting Research, 49(4): 895-931
Ding, Y., Hope, O.K., Jeanjean, T., Stolowy, H. (2007) Differences between domestic accounting standards and IAS: Measurement, determinants and implications. Journal of Accounting and Public Policy, 26(1): 1-38
European Parliament, Council of the European Union (2004) Regulation (EC) No 726/2004 of the European Parliament and of the Council. Official Journal of European Union, Parliament, T.H.E.E., Council, T.H.E., The, O.F., Union, E., Official Journal of the European Communities, [online], Retrieved in May 2018 from https://doi.org/http://eur-lex.europa.eu/pri/ en/oj/dat/
Fontes, A., Rodrigues, L.L., Craig, R. (2005) Measuring convergence of national accounting standards with international financial reporting standards. Accounting Forum, 29(4): 415-436
Hsu, C.C., Sandford, B.A. (2007) The Delphi technique: Making sense of consensus. Practical Assessment, Research and Evaluation, 12(1): 10, http://pareonline. net/getvn.asp?v=12&n=10
International Federation of Accountants (2016) IFAC Global SMP survey: 2016 results
Likert, R. (1932) A technique for the measurement of attitudes. Archives of Psychology, 22(140): 21-55
Malinić, D., Novićević, B., Malinić, S., Stojanović, R. (2016) Računovodstveni regulatorni okvir i kvalitet finansijskog izveštavanja i Republici Srbiji - istraživačka studija. Beograd: Savez računovođa i revizora Srbije
Milutinović, S. (2016) Savremeni trendovi u harmonizaciji finansijskog izveštavanja. Univerzitet u Novom Sadu
Nerurkar, P., Shirke, A., Chandane, M., Bhirud, S. (2018) Empirical analysis of data clustering algorithms. Procedia Computer Science, 125: 770-779
Okoli, C., Pawlowski, S.D. (2004) The Delphi method as a research tool: An example, design considerations and applications. Information & Management, 42(1): 15-29
Palacios-Manzano, M., Martinez-Conesa, I. (2014) Assessing the impact of IFRS adaptation on earnings management: An emerging market perspective. Transformations in Business & Economics, 13(1): 21-40
Peng, S., van der Laan, S.J. (2010) Chinese GAAP and IFRS: An analysis of the convergence process. Journal of International Accounting, Auditing and Taxation, 19(1): 16-34
Qu, X., Zhang, G. (2010) Measuring the convergence of national accounting standards with international financial reporting standards: The application of fuzzy clustering analysis. International Journal of Accounting, 45(3): 334-355
Quah, C.H. (2014) Revisiting business cycles in the Eurozone: A fuzzy clustering and discriminant approach. Acta Oeconomica, 64(2): 161-180
Rezaee, Z., Smith, M.L., Szendi, J.Z. (2010) Convergence in accounting standards: Insights from academicians and practitioners. Advances in Accounting, 26(1): 142-154
Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O.P., Tiwari, A., Joo, E.M., Weiping, D., Lin, C.T. (2017) A review of clustering techniques and developments. Neurocomputing, 267: 664-681
Socoliuc, M., Bostan, I., Grosu, V., Hlaciuc, E., Mihalciuc, C., Colbu, I., Mates, D. (2012) Compatibility of the Romanian accounting system with the standard IAS/IFRS system. Strategic Management, vol. 17, br. 3, str. 54-63
Sun, S., Zhao, H., He, X., Zhang, Y. (2019) The impact of accounting standards convergence on Chinese firms' overseas mergers and acquisitions. China Journal of Accounting Research, 12(3): 231-250, article in press
Syakur, M.A., Khotimah, B.K., Rochman, E.M.S., Satoto, B.D. (2018) Integration k-means clustering method and elbow method for identification of the best customer profile cluster. IOP Conference Series: Materials Science and Engineering, 336(1): 012017-012017
Tabachnick, B., Fidell, L. (2013) Using multivariate statistics. Boston: Pearson
Tan, P.N., Steinbach, M., Kumar, V. (2007) Introduction to data mining. Boston: Pearson
Thiprungsri, S., Vasarhelyi, M. (2011) Cluster analysis for anomaly detection in accounting data: An audit approach. International Journal of Digital Accounting Research, 77: 69-84
Trninic, J., Grljević, O., Serdar, A.M. (2011) Utilization of intelligent methods and techniques for customer knowledge management. Perspectives of Innovations, Economics and Business, 7(1): 48-50
Yip, R.W.Y., Young, D. (2012) Does mandatory IFRS adoption improve information comparability?. Accounting Review, 87(5): 1767-1789
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/EKOPRE2006341M
primljen: 10.10.2019.
objavljen u SCIndeksu: 25.11.2020.