Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:7
  • preuzimanja u poslednjih 30 dana:5
članak: 6 od 22  
Back povratak na rezultate
Škola biznisa
2017, br. 2, str. 137-149
jezik rada: srpski
vrsta rada: stručni članak
objavljeno: 29/03/2018
doi: 10.5937/skolbiz2-16523
Creative Commons License 4.0
Logit modeli za predviđanje stečaja
Visoka poslovna škola strukovnih studija, Novi Sad

e-adresa: sanjavbegovic@gmail.com

Sažetak

Pokretanje stečaja preduzeća predstavlja glavni pokretač kreditnog rizika, zbog čega se praćenje poslovanja preduzeća smatra opravdanim. Modeli koji predviđaju pokretanje stečaja preduzeća jesu efikasan alat čijom primenom se smanjuje rizik u poslovanju. U radu su predstavljeni prvi modeli nastali na temeljima logističke regresije, a koji su ujedno našli i najveću primenu u praksi. Istaknute su prednosti i mane logit modela za predviđanje stečaja preduzeća. Dat je kratak prikaz i logit modela nastalih za konkretna tržišta sa posebnim karakteristikama, među kojima je i tržište Republike Srbije.

Ključne reči

Reference

Agresti, A. (2007) An Introduction to Categorical Data Analysis. Hoboken, New Jersey: John Wiley & Sons, Inc
Altman, E.I. (1968) Financial rations, discriminant analysis and the predication of corporate bankruptcy. Journal of Finance, 23(4), str. 589-609
Douglas, E., Lont, D., Scott, T. (2014) Finance company failure in New Zealand during 2006-2009: Predictable failures?. Journal of Contemporary Accounting & Economics, 10(3): 277-295
Falcon, L.T. (2007) Logit models to assess credit risk. u: Credit Risk Assessment Re-visited: Methodological Issues and Practical Implications, European Committee of Central Balance Sheet Data Offices, 25-48
Giordani, P., Jacobson, T., Schedvin, E.von, Villani, M. (2014) Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios. Journal of Financial and Quantitative Analysis, 49(04): 1071-1099
Hillegeist, S.A., Keating, E.K., Cram, D.P., Lundstedt, K.G. (2004) Assessing the Probability of Bankruptcy. Review of Accounting Studies, 9(1): 5-34
Karamzadeh, M.S. (2013) Application and Comparison of Altman and Ohlson Models to Predict Bankruptcy of Companies. Research Journal of Applied Sciences, Engineering and Technology `, 11(9): 2007-2011
Kuman, R.G., Kuman, K. (2012) A Comparison of Bankruptcy Models. International journal of marketing, financial services & management research, 1 (4): 76-86
Laitinen, T., Kankaanpaa, M. (1999) Comparative analysis of failure prediction methods: the Finnish case. European Accounting Review, 8(1): 67-92
Lin, T. (2009) A cross model study of corporate financial distress prediction in Taiwan: Multiple discriminant analysis, logit, probit and neural networks models. Neurocomputing, 72(16-18): 3507-3516
Nikolic, N., Zarkic-Joksimovic, N., Stojanovski, D., Joksimovic, I. (2013) The application of brute force logistic regression to corporate credit scoring models: Evidence from Serbian financial statements. Expert Systems with Applications, 40(15): 5932-5944
Ohlson, J.A. (1980) Financial Ratios and the Probabilistic Prediction of Bankruptcy. Journal of Accounting Research, 18(1): 109
Sajter, D. (2009) Pregled određenih metoda i istraživanja poslovnih poteškoća uz predviđanje stečaja. Ekonomska misao i praksa, 18 (2): 429-452
Stanišić, N., Mizdraković, V., Knežević, G. (2013) Corporate bankruptcy prediction in the Republic of Serbia. Industrija, vol. 41, br. 4, str. 145-159
Zavgren, C.V. (1985) Assessing the vulnerability to failure of American industrial firms: a logistic analysis. Journal of Business Finance & Accounting, 12(1): 19-45