Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:5
  • preuzimanja u poslednjih 30 dana:3

Sadržaj

članak: 1 od 9  
Back povratak na rezultate
2021, vol. 46, br. 3, str. 1-22
Pregled zajedničkih sistema prirodne ventilacije i hlađenja isparavanjem za staklenike i realnost Nigerije
Michael Okpara University of Agriculture, Department of Agricultural and Bioresources Engineering, Umudike, Nigeria

e-adresachidima.nebonta@gmail.com
Ključne reči: temperatura okoline; hlađenje isparavanjem; hlađenje ventilatorom i evaporatorom; hlađenje maglom; staklenik; relativna vlažnost
Sažetak
Staklenici simuliraju potrebno okruženje za uspešan rast i razvoj biljaka. Oni dizajnom postižu ovakvo okruženje isporučujući neophodne klimatske inpute potrebne biljkama, i istovremeno isključuju faktore koji ometaju rast biljaka, pa se zato nazivaju i objekti sa kontrolisanim okruženjem. Jedno od najvećih i najpotrebnijih karakteristika staklenika je njegova sposobnost da obezbede efikasno hlađenje biljaka. Ovaj rad je opširno analizirao koncept hlađenja isparavanjem koji se primenjuje u staklenicima. Takođe su razmatrani faktori: deficit pritiska pare (VPD), relativna vlažnost i temperatura okoline, obzirom na efekte efikasnosti sistema hlađenja isparavanjem. Analizirana je efikasnost sistema ventilator-sistem za evaporativno hlađenje (evaporator) i sistema za maglu i upoređena sa njihovom posledičnom zavisnošću od faktora kao što su: ra ma mlaznice, dužina mlaznice, efikasnost zasićenja materijala (uložaka) sistema za evaporativno hlađenje, itd. Metoda prirodne ventilacije takođe je analizirana za poseban staklenik i način hlađenja, kao dodata ostalim sistemima za hlađenje. Analizirani su faktori poput brzine razmene vazduha u objektu, ukupne površine ventilacionih otvora, brzine strujanja vazduha, uglova otvaranja otvora itd, a razmatrani su u skladu sa njihovim efektima na efikasnost metode prirodne ventilacije. Takođe je predstavljena perspektiva staklenika u Nigeriji i njihova metoda hlađenja, sa osvrtom na razvoj lokalnih sistema za evaporativno hlađenje (isparivani hladn aci) kao i na mogućnost za njihov uvoz, pristupačnost, korišćenje-upravljanje, dostupnost i primenu za poljoprivredne kulture u Nigeriji.
Reference
Ahmed, E.M., Abaas, O., Ahmed, M.M., Ismail, M.R. (2011) Performance evaluation of three different types of local evaporative cooling pads in greenhouses in Sudan. Saudi Journal of Biological Sciences, 18(1): 45-51
Aich, W., Kolsi, L., Borjini, M., Aissia, H.B., Oztop, H.F., Abu-Hamdeh, N. (2016) Three-dimensional computational fluid dynamics analysis of buoyancy-driven natural ventilation and entropy generation in a prismatic greenhouse. Thermal Science, pp.1-12
Alam, M.F., Sazidy, A.S., Kabir, A., Mridha, G., Litu, N.A., Rahman, M.A. (2017) An experimental study on the design, performance and suitability of evaporative cooling system using different indigenous materials. u: AIP conference Proceeding 1851, American Institute of Physics, 20075-20076
Arbel, A.Y., Yekutieli, O.B., Rak, M. (1999) Performance of a fog system for cooling Greenhouses. Journal of Agricultural Engineering Research, 72(2): 129-136
Babaremu, K.O., Adekanye, T.A., Okokpujie, I.P., Fayomi, J., Atiba, O.E. (2019) The significance of active evaporative cooling system in the shelf life enhancement of vegetables (red and green tomatoes) for minimizing post-harvest losses. Procedia Manufacturing, 35(1): 1256-1261
Benni, S., Tassinari, P., Bonora, F., Barbaresi, A., Torreggiani, D. (2016) Efficacy of greenhouse natural ventilation: Environmental monitoring and CFD simulations of a study case. Energy and Buildings, pp.1-40
Bucklin, R.A., Leary, J.D., McConnell, D.B., Wilkerson, E.G. (2004) Fan and pad greenhouse evaporative systems. Institute of Food and Agr. Sciences(IFAS), pp.1-8
Buffington, D.E., Bucklin, R.A., Henley, R.W., McConell, D.B. (2016) Greenhouse ventilation. Florida: University of Florida-Institute of Food and Agricultural Sciences
Chauhan, P., Kim, W., Lieth, J. (2003) Combined effect of the whitening and ventilation methods on microclimate and transpiration in rose greenhouse. u: International conference on thermal energy storage technologies, Devi, India: Ahilya University Indore-17, pp. 1-5
Chu, C., Lan, T., Tasi, R., Wu, T., Yang, C. (2017) Wind-driven natural ventilation of greenhouses with vegetation. J.of Biosystems Engineering, 164: 221-234
Duarte-Galvan, C., Torres-Pacheco, I., Guevara-Gonzalez, R.G., Romero-Troncoso, R.J., Contreras-Medina, L.M., Rios-Alcaraz, M.A., et al. (2012) Review: Advantags and disadvantages of control theories applied in greenhouse climate control systems. Spanish Journal of Agricultural Research, 10(4): 926-926
Fitz-Rodríguez, E., Kacira, M., Villarreal-Guerrero, F., Giacomelli, G.A., Linker, R., Kubota, C., Arbel, A. (2011) Neural network predictive control in a naturally ventilated and fog cooled greenhouse. Acta Horticulture: International Symposium on Greenhouse Systems, (952): 45-52
Food and Agriculture Organization of the United Nations (FAO) (2013) Good agricultural practices for greenhouse vegetable crops: Principles for Mediterranean climate areas. Rome, 640, ISBN 978-92-5-107649-1
Franco, A., Valera, D., Peña, A. (2014) Energy efficiency in greenhouse evaporative cooling techniques: Cooling boxes versus cellulose pads. Energies, 7(3): 1427-1447
Ganguly, A., Ghosh, S. (2011) A review of ventilation and cooling technologies in agricultural greenhouse application. Iranica journal of Energy and Environment, pp.32-46
Ghani, S., Bakochristou, F., Elbialy, E.M.A.A., Gamaledin, S.M.A., Rashwan, M.M., Abdelhalim, A.M., Ismail, S.M. (2019) Design challenges of agricultural greenhouses in hot and arid environments: A review. Engineering in Agriculture, Environment and Food, 12(1): 48-70
Groener, B., Knopp, N., Korgan, K., Perry, R., Romero, J., Smith, K., et al. (2015) Preliminary design of a low-cost greenhouse with open source control systems. Procedia Engineering, 107: 470-479
Guerrero, F.V., Kacira, M., Fitz-Rodriguez, E., Linker, R., Arbel, A., Kubota, C., et al. (2010) Developing a control Strategy for greenhouse equipped with natural ventilation and variable pressure fogging: Evapotranspiration models and simulated comparison of fixed and varriable fogging systems. American Society of Agricultural and Biological Engineers, pp.1-7
Hayashi, M.H., Ohyama, K., Toida, H., Goto, E., Kozai, T. (2006) Developing control logic for a high-presure fog cooling System operation for a naturally ventilated greenhouse. Environmental control and Biology, 44(1): 1-9
He, X., Wang, J., Guo, S., Zhang, J., Wei, B., Sun, J., et al. (2017) Ventilation optimization of solar greenhouse with removable back walls based on CFD. Computers and Electronics in Agriculture, 10(1), 1-10
Helmy, M.A., Eltawil, M.A., Abo-Sheishaa, R.R., El-Zan, N.N. (2013) Enhancing the evaporative cooling performance of fan -pad systems using alternative pad materials and water film over the greenhouse roof. Agricultural Engineering International CIGR Journal, 15(2): 173-187
Hesham, A.A., Al-Faraj, A.A., Hegazy, M.A., Ghany, A.M. (2016) Effect of cooling strategies on the uniformity of greenhouse microclimate: A review. Ciencia e Tecnica Vitivinicola, pp.1-40
Hugang, L., Shuangxi, W. (2015) Technologies and studies in greenhouse cooling. World Journal of Engineering and Technology, 3: 73-77
Ibrahim, U.H., Nathan, C., Ayuba, A. (2018) Predicted percentage dissatisfied (PPD) model evaluation of evaporative cooling potentials of some selected cities in Nigeria. Nigerian Journal of Technology, 37(1): 130-134
Ishigami, Y., Asai, T., Goto, E. (2015) A method of cooling greenhouses by controlling both the rates of fog generation and forced ventilation. Acta Horticulturae, 1-11
Ishigami, Y., Tetsuka, T., Goto, E. (2014) Analysis of the aerial environment of a tomato greenhouse equipped with different fog cooling systems. Journal of Agricultural Meteorology, 70(2): 127-131
Ishii, M., Sase, S., Moriyama, H., Okushima, L., Ikeguchi, A., Hayashi, M., et al. (2016) Controlled environment agriculture for effective plant production systems in a semiarid greenhouse. Japan Agricultural Research Quarterly: JARQ, 50(2): 101-113
Jiaoliao, C., Yamwen, C., Fang, X., Haigen, H., Quinglin, A. (2014) Analysis and optimisation of the fan and pad evaporative cooling System for greenhouse based on CFD. Advances in Mechanical Engineering, pp.1-8
Jimoh, K. (2017) Greenhouse technology in Nigeria: Grain Nigeria: Promoting innovative agriculture in Nigeria. pp. 1-3
Keesung, K., Giacomelii, G.A., Yoon, Y., Sadanori, S. (2007) CFD modelling to improve the design of a fog System for cooling Greenhouses. Japan Agricultural Research Quarterly, 41(4): 283-290
Kuang-Cheng, Y., Hsiang-Min, H., Yen-Ching, C. (2015) Discussion and measurement of applying a cooling fogging air-conditioning System for working environment cooling and air quality improvement. Journal of Applied Sciences, pp.763-772
Kumar, K.S., Tiwari, K.N., Jha, M.K. (2009) Design and technology for greenhouse cooling in tropical and subtropical regions: A review. Energy and Buildings, 41(12): 1269-1275
Laknizi, A., Mahdaoui, M., Abdellah, A.B., Anoune, K., Bakhouya, M., Ezbakhe, H. (2019) Performance analysis and optimal parameters of a direct evaporative pad cooling system under the climate conditions of Morocco. Case Studies in Thermal Engineering, 13: 100362
Marín, P., Moreno, M.A., Molina-Aiz, F.D., Valera, D.L. (2017) Influence of the greenhouse type and cooling system on the production of a tomato crop during the spring/summer cycle under Mediterranean climate. Acta Horticulturae, (1170): 829-833
McCartney, L., Orsat, V., Lefsrud, M.G. (2018) An experimental study of the cooling performance and airflow patterns in a model Natural Ventilation Augmented Cooling (NVAC) greenhouse. Biosystems Engineering, 174: 173-189
Mehnet, A.D., Hassan, H.S. (2015) Performance analysis of a greenhouse fan and pad cooling System: Gradients of horizontal temperature and relative humidity. Journal of Agricultural Sciences, 21: 132-143
Mijinyawa, Y., Gbadebo, I.O. (2011) The status of greenhouse utilisation in Oyo state, Nigeria. J. of engineering Trends in engineering and Applied Sciences, 2(4): 561-566
Mirja, A.S., Misra, D., Ghosh, S. (2016) Study the performance of a fogging System for a naturally ventilated, fog-cooled greenhouse. Journal of Energy Research and Environmental Technology, pp.19-23
Misra, D., Ghosh, S. (2018) Evaporative cooling technologies for Greenhouses: A comprehensive review. Agricultural Engineering International Journal, pp.1-15
Misra, D., Ghosh, S. (2017) Microclimatic modeling and analysis of a fog-cooled naturally ventilated greenhouse. International Journal of Environment, Agriculture and Biotechnology, 2(2): 997-1001
Mutwiwa, U.N., Max, J.J., Tantau, H.T. (2007) Effects of greenhouse cooling methods on the growth and yield of tomatoes in the tropics. u: Conference on international agricultural research for development, Tropentag: University of Kassel- Witzenhaussen, pp. 9-11
Ndukwu, M.C., Manuwa, S.I., Olukunle, O.J., Oluwalana, I.B. (2013) Development of an active evaporative cooling system for short-term storage of fruits and vegetable in a tropical climate. Agricultural Engineering Int. CIGR Journal, Vol. 15. Iss. 4. pp. 307-313
Nicolosi, G., Volpe, R., Messineo, A. (2017) An innovative adaptive control System to regulate microclimatic conditions in a greenhouse. Energies, 10(722), pp.1-17
Odudu, O.O. (2019) Urban Farming in Vacant Lands in Tertiary Institutions: A Study of Greenhouse Farming in Ajayi Crowther University, Oyo Town, Nigeria. Ethiopian Journal of Environmental Studies and Management, 12(5): 551-562
Ogbuagu, N.J., Green, I.A., Anyanwu, C.N., Ume, J.I. (2017) Performance evaluation of a composite-padded evaporative cooling storage bin. Nigerian Journal of Technology, 36(1), pp.1-9
Okunola, I. (2013) Glasshouse production of vegetable and ornamentals for agricultural productivity in Nigeria. World Science Research Journal, 1(4): 113-119
Oyediran, W.O. (2016) Gender participation in tomato greenhouse technology, empowerment scheme in Ogun state, Nigeria. International Journal of Research in engineering and Social Sciences, 6(1): 17-28
Oyediran, W., Shobowale, A.A., Onabajo, A.O. (2020) Effect of socio-economic characteristics of greenhouse farmers on vegetable production in Ogun state, Nigeria. Sustainability, Agri, Food and Environmental Research, 8(1): 76-86
Oz, H., Atligan, A., Buyuktas, K., Alagoz, T. (2009) The efficiency of fan and pad cooling System in Greenhouses and building up of internal greenhouse temperature map. African Journal of Biotechnology, 8(20): 5436-5444
Ozturk, H.H. (2006) Evaporative cooling efficiency of a fogging system in a rose greenhouse. Australian Journal of Experimental Agriculture, 46(9): 1231-1231
Porumb, B., Ungureşan, P., Tutunaru, F.L., Şerban, A., Bălan, M. (2016) A review of indirect evaporative cooling technology: Susut.solutions for energy and environment. Energy Procedia, 85: 461-471
Roberts, W.J. (2003) Ventilation ans cooling of Greenhouses. Tucson: Greenhouse Design Short Course
Santolini, E., Pulvirenti, B., Benni, S., Barbaresi, L., Torreggiani, D., Tassinari, P. (2017) Numerical study of wind-driven natural ventilation in a greenhouse with screens. Computers and Electronics in Agriculture, 9(27), pp.1-13
Santosh, D.T., Tiwari, K.N., Singh, V.K., Raja, R.G. (2017) Microcliate control in greenhouse. Int.Journal of Current Microbiology and Applied Sciences, pp.1730-1742
Sase, S., Moriyama, H., Kubota, C., Kurata, K., Hayashi, M., Sabeh, N., et al. (2006) Effect of Natural ventilation rate on relative humidity and water use for fog cooling in a semiarid greenhouse. u: ISHS Acta horticulture: Int.symposium, 1-7
Shamshiri, R.R., Kalantari, F., Ting, K.C., Thorp, R.K., Hameed, A.I., Weltzien, C. (2018) Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture. International Journal of Agriculture and Biological Engineering, 1-22
Shen, Y., Yu, S.L. (2002) Cooling methods for Greenhouses in tropical region. Acta Horticulturae, pp.1-7
Singh, M.C., Singh, J.P., Pandey, S.K., Cutting, N.G., Sharma, P., Shrivastav, V., et al. (2018) A review of three commonly used techniques of controlling greenhouse microclimate. International Journal of Current Microbiology and Applied Sciences, 7(1): 3491-3506
Teitel, M., Baeza, E.J., Montero, J.I. (2012) Greenhouse design: Concepts and trends. Acta Horticulturae, (952): 605-620
UGCE (2009) Greenhouse: Heating, cooling and ventilation. u: Bulletin, University of Georgia Co-Operative Extension, no. 792
Vala, K.V., Kumpavat, M.T., Nema, A. (2016) Comparative performance evaluation of evaporative cooling local pad materials with commercial pads. International Journal of Engineering Trends and Technology, 39(4): 198-203
Wang, S., Boulard, T., Haxaire, R. (1999) Air speed profiles in a naturally ventilated greenhouse with a tomato crop. Agricultural and Forest Meteorology, 96(4): 181-188
Warke, D.A., Deshmukh, J.S. (2017) Experimental analysis of cellulose cooling pads in evaporative coolers. Int. Journal of Energy Science and Engineering, 3(4): 37-43
Worley, J. (2009) Greenhouse: Heating, cooling and ventilation. Learning for Life, pp. 1-12
Youssef, G.D.M., El-Ashmawy, N.M. (2017) Improving the Greenhouses macroclimate of hot and humid regions by modified evaporative cooling System. Journal of Agricultural Engineering, 34(4): 2385-2410
Zhang, D., Zhang, Z., Jianming, L., Chang, Y., Tonghua, P., Qingjie, D. (2015) Regulation of Vapor Pressure deficit by greenhouse micro-fog systems improved growth and productivity of tomato via enhancing photosynthesis during summer seasons. PLOS ONE, 10(7), pp.1-16
Zhang, Y., Kacira, M., Lingling, A. (2016) A CFD study on improving air flow uniformity in indoor plant factory system. Biosystems Engineering, 147: 193-205
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/PoljTeh2103001I
primljen: 01.03.2021.
revidiran: 20.05.2021.
prihvaćen: 16.07.2021.
objavljen u SCIndeksu: 17.09.2021.

Povezani članci

Poljoprivredna tehnika (2021)
Obrada posle žetve, pakovanje i skladištenje afričkog semena (zrna) za ulje
Onyekachi Igbozulike Augustine, i dr.

Recyc & Sust Dev (2020)
Analiza primene akvaponskog sistema kao modela cirkularne ekonomije - pregled
Aleksić Natalija, i dr.