Akcije

Matematički vesnik
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:0
  • preuzimanja u poslednjih 30 dana:0

Sadržaj

članak: 2 od 2  
Back povratak na rezultate
2008, vol. 60, br. 2, str. 107-120
An iterative method for variational inequality problems and fixed point problems in Hilbert spaces
(naslov ne postoji na srpskom)
aDepartment of Mathematics, Tianjin Polytechnic University, Tioanjin, China + Department of Mathematics and the RINS, Gyeongsang National University, Chinju, Korea
bDepartment of Mathematics, Shijiazhuang University, Shijiazhuang, China
cDepartment of Mathematics, Tianjin Polytechnic University, Tianjin, China

e-adresaljjhqxl@yahoo.com.cn
Ključne reči: projection method; relaxed cocoercive mapping; nonexpansive mapping; fixed point
Sažetak
(ne postoji na srpskom)
In this paper, we introduce a new iterative scheme to investigate the problem of finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of a variational inequality problem for a relaxed (γ, r)-cocoercive, Lipschitz continuous mapping. Our results improve and extend the corresponding results of many others.
Reference
Gabay, D. (1983) Applications of the method of multipliers to variational inequalities. u: Fortin M., Glowinski R. [ur.] Augmented Lagrangian Methods, Amsterdam: North-Holland, 299-331
Iiduka, H., Takahashi, W. (2005) Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings. Nonlinear Anal, 61, 341-350
Korpelevich, G.M. (1976) An extragradient method for finding saddle points and for other problems. Ekonomika i Matematicheskie Metody, 12, 747-756
Nadephkina, N., Takahashi, W. (2006) Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl, 128, 191- 201
Osilike, M.O., Igbokwe, D.I. (2000) Weak and strong convergence theorems for fixed points of pseudocontractions and solutions of monotone type operator equations. Comput. Math. Appl, 40, 559-567
Rockafellar, R.T. (1970) On the maximality of sums of nonlinear monotone operators. Trans. Amer. Math. Soc., 149, 75-88
Stampacchia, G. (1964) Formes bilinéaires coercivites sur les ensembles convexes. Comptes rendus Acad. Sci., Paris, 258, 4413-4416
Suzuki, T. (2005) Strong convergence of Krasnoselskii and Mann's type sequences for one-parameter nonexpansive semigroups without Bochner integrals. J. Math. Anal. Appl, 305, 227- 239
Takahashi, W., Toyoda, M. (2003) Weak convergence theorems for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl, 118, 417-428
Verma, R.U. (2004) Generalized system for relaxed cocoercive variational inequalities and its projection methods. J. Optim. Theory Appl, 121 (1), 203-210
Verma, R.U. (2005) General convergence analysis for two-step projection methods and application to variational problems. Appl. Math. Lett, 18 (11), 1286-1292
Xu, H.K. (2002) Iterative algorithms for nonlinear operators. J London Math. Soc, 66, 240-256
Yao, J.C. (1994) Variational inequalities with generalized monotone operators. Math. Operations Research, 19, 691-705
Yao, Y., Yao, J.C. (2007) On modified iterative method for nonexpansive mappings and monotone mappings. Appl. Math. Comput, 186, 1551-1558
Zeng, L.C., Yao, J.C. (2006) Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems. Taiwanese J. Math, 10, 1293-1303
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
objavljen u SCIndeksu: 16.06.2008.

Povezani članci

Nema povezanih članaka