Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:[2]
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:7
  • preuzimanja u poslednjih 30 dana:4
članak: 8 od 31  
Back povratak na rezultate
Advanced Technologies
2017, vol. 6, br. 1, str. 5-13
jezik rada: engleski
vrsta rada: izvorni naučni članak
objavljeno: 29/06/2017
doi: 10.5937/savteh1701005C
Produkcija i karakterizacija β-galaktozidaze iz Lactobacillus acidophilus
Univerzitet u Beogradu, Tehnološko-metalurški fakultet, Katedra za biohemijsko inženjerstvo i biotehnologiju

e-adresa: mcarevic@tmf.bg.ac.rs

Sažetak

β-Galaktozidaza je značajan industrijski enzim koji se tradicionalno koristi za katalizovanje reakcije hidroloze laktoze, ali poslednjih godina nalazi i sve značajniju primenu u reakcijama sinteze različitih bioaktivnih galaktozida. U ovoj studiji, ispitani su optimalni uslovi za postizanje visokih prinosa β-galaktozidaze iz Lactobacillus acidophilus ATCC 4356, bakterije mlečne kiseline koja se smatra bezbednom za korišćenje u prehrambenim proizvodima. Statističkim planiranjem eksperimenata i metodom odzivnih površina, zaključeno je da se najveća aktivnost i specifična aktivnost dobijaju nakon dvodnevne fermentacije na temperaturi od 28°S, kada je koncentracija laktoze 1,48%, a koncentracija inokuluma 2,80%. Temperaturni i rN optimum dobijenog enzima iznose 45°S i 6,8, redom, pri čemu ovi uslovi istovremeno omogućuju i izuzetnu stabilnost enzima. U kinetičkoj studiji određene su vrednosti kinetičkih parametara, Km i Vmax: 0,44 mM i 25,64 mM/h (za o-nitrofenil- β-D-galaktopiranozid), odnosno 3,79 mM i 3,10 mM/h (za laktozu). Takođe, nije primećena inhibicija supstratom u višku, dok se enzim inaktivira u prisustvu jona Ca2+, Ba2+, i Cu2+. PR Projekat Ministarstva nauke Republike Srbije, br. III 46010.

Ključne reči

Reference

Bradford, M. (1976) A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry, 72(1-2): 248-254
Carević, M., Veličković, D., Stojanović, M., Milosavić, N., Rogniaux, H., Ropartz, D., Bezbradica, D. (2015) Insight in the regioselective enzymatic transgalactosylation of salicin catalyzed by β-galactosidase from Aspergillus oryzae. Process Biochemistry, 50(5): 782-788
Carević, M., Ćorović, M., Mihailović, M., Banjanac, K., Milisavljević, A., Veličković, D., Bezbradica, D. (2016) Galacto-oligosaccharide synthesis using chemically modified β-galactosidase from Aspergillus oryzae immobilised onto macroporous amino resin. International Dairy Journal, 54: 50-57
Carević, M., Vukašinović-Sekulić, M., Grbavčić, S., Stojanović, M., Mihailović, M., Dimitrijević, A., Bezbradica, D. (2015) Optimization of (-galactosidase production from lactic acid bacteria. Hemijska industrija, vol. 69, br. 3, str. 305-312
Chen, X.Y., Gänzle, M.G. (2017) Lactose and lactose-derived oligosaccharides: More than prebiotics?. International Dairy Journal, 67: 61-72
Dagbagli, S., Goksungur, Y. (2008) Optimization of ß-galactosidase production using Kluyveromyces lactis NRRL Y-8279 by response surface methodology. Electronic Journal of Biotechnology, 11(4): 0-0
Gänzle, M.G. (2012) Enzymatic synthesis of galacto-oligosaccharides and other lactose derivatives (hetero-oligosaccharides) from lactose. International Dairy Journal, 22(2): 116-122
Hsu, C.A., Yu, R.C., Chou, C.C. (2005) Production of beta-galactosidase by Bifidobacteria as influenced by various culture conditions. International journal of food microbiology, 104(2): 197-206
Husain, Q. (2010) Beta galactosidases and their potential applications: a review. Critical reviews in biotechnology, 30(1): 41-62
Illanes, A. (2011) Whey upgrading by enzyme biocatalysis. Electronic Journal of Biotechnology, 14(6): 1-28
Maawia, K., Iqbal, S., Qamar, T.R., Rafiq, P., ullah Azmat,, Ahmad, M. (2016) Production of impure prebiotic galacto-oligosaccharides and their effect on calcium, magnesium, iron and zinc absorption in Sprague-Dawley rats. PharmaNutrition, 4(4): 154-160
Macfarlane, G.T., Steed, H., Macfarlane, S. (2007) Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. Journal of Applied Microbiology, 104: 305-344
Nath, A., Mondal, S., Chakraborty, S., Bhattacharjee, C., Chowdhury, R. (2014) Production, purification, characterization, immobilization, and application of β -galactosidase: a review. Asia-Pacific Journal of Chemical Engineering, 9(3): 330-348
Neri, D.F.M., Balcão, V.M., Cardoso, S.M., Silva, A.M.S., Domingues, M.do R.M., Torres, D.P.M., Rodrigues, L.R.M., Carvalho, L.B., Teixeira, J.A.C. (2011) Characterization of galactooligosaccharides produced by β-galactosidase immobilized onto magnetized Dacron. International Dairy Journal, 21(3): 172-178
Nguyen, T., Splechtna, B., Steinböck, M., Kneifel, W., Lettner, H.P., Kulbe, K.D., Haltrich, D. (2006) Purification and Characterization of Two Novel β-Galactosidases from Lactobacillus reuteri. Journal of Agricultural and Food Chemistry, 54(14): 4989-4998
Nguyen, T., Splechtna, B., Krasteva, S., Kneifel, W., Kulbe, K.D., Divne, C., Haltrich, D. (2007) Characterization and molecular cloning of a heterodimeric β-galactosidase from the probiotic strain Lactobacillus acidophilus R22. FEMS Microbiology Letters, 269(1): 136-144
Nwabueze, T.U. (2010) Review article: Basic steps in adapting response surface methodology as mathematical modelling for bioprocess optimisation in the food systems. International Journal of Food Science & Technology, 45(9): 1768-1776
Palai, T., Kumar, A., Bhattacharya, P.K. (2015) Kinetic studies and model development for the formation of galacto-oligosaccharides from lactose using synthesized thermo-responsive bioconjugate. Enzyme and Microbial Technology, 70: 42-49
Pan, Q., Li, J., Cong, Y., Liu, L., Zhu, J., Hu, F. (2008) Cloning, expression and characterization of a heterodimeric betagalactosidase from Lactobacillus acidophilus ATCC 4356. Acta Microbiologica Sinica, 48, 1339-1343
Panesar, P.S., Panesar, R., Singh, R.S., Kennedy, J.F., Kumar, H. (2006) Microbial production, immobilization and applications of β-D-galactosidase. Journal of Chemical Technology & Biotechnology, 81(4): 530-543
Park, A., Oh, D. (2010) Galacto-oligosaccharide production using microbial β-galactosidase: current state and perspectives. Applied Microbiology and Biotechnology, 85(5): 1279-1286
Sangwan, V., Tomar, S.K., Singh, R.R.B., Singh, A.K., Ali, B. (2011) Galactooligosaccharides: Novel Components of Designer Foods. Journal of Food Science, 76(4): R103-R111
Shoaf, K., Mulvey, G. L., Armstrong, G. D., Hutkins, R. W. (2006) Prebiotic Galactooligosaccharides Reduce Adherence of Enteropathogenic Escherichia coli to Tissue Culture Cells. Infection and Immunity, 74(12): 6920-6928
Splechtna, B., Nguyen, T., Haltrich, D. (2007) Comparison between Discontinuous and Continuous Lactose Conversion Processes for the Production of Prebiotic Galacto-oligosaccharides Using β-Galactosidase from Lactobacillus reuteri. Journal of Agricultural and Food Chemistry, 55(16): 6772-6777
Tari, C., Ustok, F.I., Harsa, S. (2010) Production of Food Grade β-Galactosidase from Artisanal Yogurt Strains. Food Biotechnology, 24(1): 78-94
Torres, D.P.M., Gonçalves, M.do P.F., Teixeira, J.A., Rodrigues, L.R. (2010) Galacto-Oligosaccharides: Production, Properties, Applications, and Significance as Prebiotics. Comprehensive Reviews in Food Science and Food Safety, 9(5): 438-454
Urrutia, P., Mateo, C., Guisan, J.M., Wilson, L., Illanes, A. (2013) Immobilization of Bacillus circulans β-galactosidase and its application in the synthesis of galacto-oligosaccharides under repeated-batch operation. Biochemical Engineering Journal, 77: 41-48
Vasiljevic, T., Jelen, P. (2003) Drying and storage of crude β-galactosidase extracts from Lactobacillus delbrueckii ssp. bulgaricus 11842. Innovative Food Science & Emerging Technologies, 4(3): 319-329
Vulevic, J., Drakoularakou, A., Yaqoob, P., Tzortzis, G., Gibson, G.R. (2008) Modulation of the fecal microflora profile and immune function by a novel transgalactooligosaccharide mixture (B-GOS) in healthy elderly volunteers. American Journal of Clinical Nutrition, 88, 1438-1446