Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:11
  • preuzimanja u poslednjih 30 dana:0
članak: 1 od 46  
Back povratak na rezultate
Vojnosanitetski pregled
2019, vol. 76, br. 3, str. 266-271
jezik rada: engleski
vrsta rada: izvorni naučni članak
doi:10.2298/VSP170328085N

Creative Commons License 4.0
Povezanost osteokalcina i energetskog metabolizma kod gojaznosti
aUniversity of Novi Sad, Faculty of Medicine, Clinical Center of Vojvodina, Center of Laboratory Medicine, Novi Sad
bUniversity of Novi Sad, Faculty of Medicine, Clinical Center of Vojvodina, Clinic for Endocrinology, Diabetes and Metabolic Disorders, Novi Sad

e-adresa: STANISLAVA.NIKOLIC@mf.uns.ac.rs

Sažetak

Uvod/Cilj. Brojna dosadašnja saznanja ukazala su na postojanje uloge osteokalcina, tradicionalnog parametra metaboličke aktivnosti kosti, u regulaciji metabolizma ugljenih hidrata. Cilj ove studije bio je da se utvrdi postojanje relacije između osteokalcina i izračunatih parametara procene stepena insulinske osetljivosti/rezistencije i sekretorne sposobnosti pankreasa kod gojaznih, nedijabetičnih ispitanika. Metode. Studijom je obuhvaćeno 57 gojaznih osoba (11 muškaraca i 46 žena) (indeks telesne mase - ITM: 41,03 ± 6,61 kg/m²) i 48 zdravih, normalno uhranjenih ljudi (ITM : 23,15 ± 2,04 kg/m²) koji odgovaraju ispitivanoj grupi, po starosti i polu. Svim ispitanicima izmerena je glukoza i insulin u toku dvočasovnog testa oralnog opterećenja glukozom (OGTT), osteokalcin i izračunate vrednosti Homeostatic Model Assessment (HOMA) indeksa (HOMA-IR, HOMA-B%), EISI (indeksa insulinske osetljivosti), (estimated first phase) i EFP (estimated second phase) druge faze (ESP) i procena sekretarnog kapaciteta pankreasnih ćelija druge faze (ESP). Koncentracija osteokalcina merena je u serumu, elektrohemiluminescentnom (ECLIA) metodologijom. Rezultati. Utvrđene su statistički značajno niže vrednosti osteokalcina u grupi gojaznih (ITM = 24,72 ± 9,80 vs 33,31 ± 10,89 ng/mL; p < 0,01). Linearnom korelacionom analizom dobijen je visok stepen pozitivne povezanosti osteokalcina sa EISI (r = 0,340; p < 0,01). Inverzna korelacija utvrđena je između osteokalcina i HOMA-IR (r = -0,276; p < 0,01), HOMA-B% (r = -0,337; p < 0,01), EFP (r = -0,332; p < 0,01) i ESP (r = -0,266; p < 0,01). ITM i osteokalcin imaju značajnu inverznu predikciju sa EISI i HOMA-IR, ali je nivo predikcije ITM bitno viši u odnosu na osteokalcin. Zaključak. Uticaj osteokalcina na sistem glikoregulacije je evidentan, ali je njegov udeo u tome bitno manji u odnosu na gojaznost i druge činioce povezane sa gojaznošću. Zbog toga se pri proceni mesta i uloge osteokalcina u glikoregulaciji, uvek mora imati u vidu da je osteokalcin, kao sistemski medijator, samo jedan od brojnih drugih faktora, pri čemu neki od njih, ispoljavaju dominantnije uticaje od osteokalcina.

Ključne reči

Reference

*** HOMA calculator software. https://www.dtu.ox.ac.uk/homacalculator/
Aoki, A., Muneyuki, T., Yoshida, M., Munakata, H., Ishikawa, S., Sugawara, H., Kawakami, M., Kakei, M. (2011) Circulating osteocalcin is increased in early-stage diabetes. Diabetes Research and Clinical Practice, 92(2): 181-186
Caballero, B. (2007) The Global Epidemic of Obesity: An Overview. Epidemiologic Reviews, 29(1): 1-5
Cifuentes, M., Johnson, M. A., Lewis, R. D., Heymsfield, S. B., Chowdhury, H. A., Modlesky, C. M., Shapses, S. A. (2003) Bone turnover and body weight relationships differ in normal-weight compared with heavier postmenopausal women. Osteoporosis International, 14(2): 116-122
Cvijovic, G., Micić, G., Kendereški, A., Zoric, S., Polovina, S., Šumarac, D.M., i dr. (2014) Glucose and bone metabolism - potential interactions. Acta Clin, 14(3): 68-72
Ferron, M., Hinoi, E., Karsenty, G., Ducy, P. (2008) Osteocalcin differentially regulates β cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proceedings of the National Academy of Sciences, 105(13): 5266-5270
Fukumoto, S., Martin, T. J. (2009) Bone as an endocrine organ. Trends in Endocrinology & Metabolism, 20(5): 230-236
Hardy, O.T., Czech, M.P., Corvera, S. (2012) What causes the insulin resistance underlying obesity?. Current Opinion in Endocrinology & Diabetes and Obesity, 19(2): 81-87
Hedblad, B., Nilsson, P., Janzon, L., Berglund, G. (2000) Relation between insulin resistance and carotid intima-media thickness and stenosis in non-diabetic subjects. Results from a cross-sectional study in Malmo, Sweden. Diabetic Medicine, 17(4): 299-307
Ionescu-Tirgoviste, C., Ioacara, S., Guja, C., Sabau, S., Lichiardopol, R., Mihai, A., Apetrei, E. (2006) A pathophysiological approach to metabolic syndrome using factor analysis in an adult Romanian population. Archives of Physiology and Biochemistry, 112(3): 182-188
Kanazawa, I., Yamaguchi, T., Tada, Y., Yamauchi, M., Yano, S., Sugimoto, T. (2011) Serum osteocalcin level is positively associated with insulin sensitivity and secretion in patients with type 2 diabetes. Bone, 48(4): 720-725
Kanazawa, I. (2015) Osteocalcin as a hormone regulating glucose metabolism. World Journal of Diabetes, 6(18): 1345
Karsenty, G. (2006) Convergence between bone and energy homeostases: Leptin regulation of bone mass. Cell Metabolism, 4(5): 341-348
Lebovitz, H. (2001) Insulin resistance: definition and consequences. Experimental and Clinical Endocrinology & Diabetes, 109(Suppl 2): S135-S148
Lee, N.K., Karsenty, G. (2008) Reciprocal regulation of bone and energy metabolism. Trends in Endocrinology & Metabolism, 19(5): 161-166
Lee, N.K., Sowa, H., Hinoi, E., Ferron, M., Ahn, J.D., Confavreux, C., Dacquin, R., Mee, P.J., McKee, M.D., Jung, D.Y., Zhang, Z., Kim, J.K., Mauvais-Jarvis, F., Ducy, P., Karsenty, G. (2007) Endocrine Regulation of Energy Metabolism by the Skeleton. Cell, 130(3): 456-469
Lucey, A.J., Paschos, G.K., Thorsdottir, I., Martínéz, J. A., Cashman, K.D., Kiely, M. (2013) Young overweight and obese women with lower circulating osteocalcin concentrations exhibit higher insulin resistance and concentrations of C-reactive protein. Nutrition Research, 33(1): 67-75
Matthaei, S., Stumvoll, M., Kellerer, M., Häring, H. (2000) Pathophysiology and Pharmacological Treatment of Insulin Resistance 1. Endocrine Reviews, 21(6): 585-618
Matthews, D.R., Hosker, J.P., Rudenski, A.S., Naylor, B.A., Treacher, D.F., Turner, R.C. (1985) Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 28(7): 412-9
Motyl, K.J., McCabe, L.R., Schwartz, A.V. (2010) Bone and glucose metabolism: A two-way street. Archives of Biochemistry and Biophysics, 503(1): 2-10
Saleem, U., Mosley, T.H., Kullo, I.J. (2010) Serum Osteocalcin Is Associated With Measures of Insulin Resistance, Adipokine Levels, and the Presence of Metabolic Syndrome. Arteriosclerosis, Thrombosis, and Vascular Biology, 30(7): 1474-1478
Sarkar, P.D., Choudhury, A.B. (2013) Relationships between serum osteocalcin levels versus blood glucose, insulin resistance and markers of systemic inflammation in central Indian type 2 diabetic patients. Eur Rev Med Pharmacol Sci, 17(12): 1631-5
Stumvoll, M., Mitrakou, A., Pimenta, W., Jenssen, T., Yki-Jarvinen, H., van Haeften, T., Renn, W., Gerich, J. (2000) Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity. Diabetes Care, 23(3): 295-301
Wiecek, A., Adamczak, M., Chudek, J. (2007) Adiponectin--an adipokine with unique metabolic properties. Nephrology Dialysis Transplantation, 22(4): 981-988
Yamauchi, T., Kamon, J., Ito, Y., Tsuchida, A., Yokomizo, T., Kita, S., Sugiyama, T., Miyagishi, M., Hara, K., Tsunoda, M., Murakami, K., Ohteki, T., Uchida, S., Takekawa, S., Waki, H., Tsuno, N.H. (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature, 423(6941): 762-9