Metrika

  • citati u SCIndeksu: [1]
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:1
  • preuzimanja u poslednjih 30 dana:0

Sadržaj

članak: 5 od 71  
Back povratak na rezultate
2020, vol. 77, br. 8, str. 773-783
Supresorske ćelije mijeloidnog porekla u sekundarnoj sepsi - postoji li povezanost sa smrtnim ishodom?
aVojnomedicinska akademija, Klinika za anesteziologiju i intenzivnu terapiju, Beograd + Univerzitet odbrane, Medicinski fakultet Vojnomedicinske akademije, Beograd
bUniverzitet odbrane, Medicinski fakultet Vojnomedicinske akademije, Beograd + Vojnomedicinska akademija, Institut za medicinska istraživanja, Beograd
cVojnomedicinska akademija, Klinika za anesteziologiju i intenzivnu terapiju, Beograd
dUniverzitet u Prištini sa privremenim sedištem u Kosovskoj Mitrovici, Medicinski fakultet, Kliničko-bolnički centar
eUniverzitet u Beogradu, Medicinski fakultet, Institut za zdravstvenu zaštitu majke i deteta Republike Srbije 'Dr Vukan Čupić' + Univerzitet u Beogradu, Medicinski fakultet
fEmergency Medical Centar of Montenegro, Podgorica, Montenegro

e-adresamaja.surbatovic@gmail.com
Sažetak
Uvod/Cilj. Uloga supresorskih ćelija mijeloidnog porekla (MDSCs) u imunskom odgovoru bolesnika sa sepsom tek treba da bude razjašnjena kod ljudi. Cilj istraživanja je bio da se utvrdi da li kod kritično obolelih sa sekundarnom sepsom i/ili septičkim šokom postoji udruženost učestalosti i/ili apsolutnih brojeva MDSCs sa ishodom bolesti. Metode. U prospektivnu studiju je bilo uključeno ukupno 40 kritično obolelih pacijenata sa sekundarnom sepsom. Detektovane su i kvantifikovane obe glavne podvrste MDSCs: granulocitna (G)-MDSCs i monocitna (M)-MDSCs, po prijemu na bolničko lečenje (prvi dan) i petog dana posle prijema. Primarni ishod je bio bolnički mortalitet. Rezultati. Veća učestalost i apsolutni brojevi subpopulacija koje odgovaraju MDSCs bili su udruženi sa lošim ishodom. Što se relativne kinetike tiče, i kod preživelih i kod umrlih, trajanje sepse od prvog do petog dana bilo je praćeno povećanjem vrednosti MDSCs u obe ispitivane subpopulacije. Multivarijantna logistička regresiona analiza je pokazala da su, za razliku od prvog dana, petog dana the Sequential Organ Failure Assessment (SOFA) skor (OR 2.350; p < 0,05) i frekvenca G-MDSCs (OR 3.575; p < 0,05) bili nezavisni prediktori letalnog ishoda. Zaključak. Ovi nalazi ukazuju na štetnu ulogu MDSCs u sekundarnoj sepsi.
Reference
Brudecki, L., Ferguson, D.A., Mccall, C.E., El, G.M. (2012) Myeloid-Derived Suppressor Cells Evolve during Sepsis and Can Enhance or Attenuate the Systemic Inflammatory Response. Infection and Immunity, 80(6): 2026-2034
Cuenca, A.G., Moldawer, L.L. (2012) Myeloid-derived suppressor cells in sepsis: Friend or foe?. Intensive Care Medicine, 38(6): 928-930
Cuenca, A.G., Delano, M.J., Kelly-Scumpia, K.M., Moreno, C., Scumpia, P.O., Laface, D.M., Heyworth, P.G., Efron, P.A., Moldawer, L.L. (2011) A Paradoxical Role for Myeloid-Derived Suppressor Cells in Sepsis and Trauma. Molecular Medicine, 17(3-4): 281-292
Darcy, C.J., Minigo, G., Piera, K.A., Davis, J.S., Mcneil, Y.R., Chen, Y., Volkheimer, A.D., Weinberg, J., Anstey, N.M., Woodberry, T. (2014) Neutrophils with myeloid derived suppressor function deplete arginine and constrain T cell function in septic shock patients. Critical Care, 18(4): R163-R163
Delano, M.J., Scumpia, P.O., Weinstein, J.S., Coco, D., Nagaraj, S., Kelly-Scumpia, K.M., O'malley, K.A., Wynn, J.L., Antonenko, S., Al-Quran, S.Z., Swan, R., Chung, C., Atkinson, M.A., Ramphal, R. (2007) MyD88-dependent expansion of an immature GR-1+CD11b+ population induces T cell suppression and Th2 polarization in sepsis. Journal of Experimental Medicine, 204(6): 1463-1474
Delano, M.J., Thayer, T., Gabrilovich, S., Kelly-Scumpia, K.M., Winfield, R.D., Scumpia, P.O., Cuenca, A.G., Warner, E., Wallet, S.M., Wallet, M.A., O'malley, K.A., Ramphal, R., Clare-Salzer, M. (2011) Sepsis Induces Early Alterations in Innate Immunity That Impact Mortality to Secondary Infection. Journal of Immunology, 186(1): 195-202
Derive, M., Bouazza, Y., Alauzet, C., Gibot, S. (2012) Myeloid-derived suppressor cells control microbial sepsis. Intensive Care Medicine, 38(6): 1040-1049
Đorđević, D., Pejović, J., Šurbatović, M., Jevđić, J., Radaković, S., Veljović, M., Perić, A., Anđelić, T., Popović, N. (2015) Prognostic value and daily trend of interleukin-6, neutrophil CD64 expression, C-reactive protein and lipopolysaccharide-binding protein in critically ill patients: Reliable predictors of outcome or not?. Journal of Medical Biochemistry, vol. 34, br. 4, str. 431-439
Gabrilovich, D.I., Nagaraj, S. (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews Immunology, 9(3): 162-174
Gentile, L.F., Cuenca, A.G., Efron, P.A., Ang, D., Bihorac, A., Mckinley, B.A., et al. (2012) Persistent inflammation and immunosuppression: A common syndrome and new horizon for surgical intensive care. J Trauma Acute Care Surg, 72(6): 1491-501
Goenka, A., Kollmann, T.R. (2015) Development of immunity in early life. Journal of Infection, 71(1): S112-S120
Hotchkiss, R.S., Moldawer, L.L. (2014) Parallels between Cancer and Infectious Disease. New England Journal of Medicine, 371(4): 380-383
Hotchkiss, R.S., Monneret, G., Payen, D. (2013) Sepsis-induced immunosuppression: From cellular dysfunctions to immunotherapy. Nature Reviews Immunology, 13(12): 862-874
Hotchkiss, R.S., Monneret, G., Payen, D. (2013) Immunosuppression in sepsis: A novel understanding of the disorder and a new therapeutic approach. Lancet Infectious Diseases, 13(3): 260-268
Jordan, K.R., Amaria, R.N., Ramirez, O., Callihan, E.B., Gao, D., Borakove, M., Manthey, E., Borges, V.F., Mccarter, M.D. (2013) Myeloid-derived suppressor cells are associated with disease progression and decreased overall survival in advanced-stage melanoma patients. Cancer immunology, immunotherapy, 62(11): 1711-22
Knaus, W.A., Draper, E.A., Wagner, D.P., Zimmerman, J.E. (1985) APACHE II: A severity of disease classification system. Crit Care Med, 13(10): 818-847
Lai, D., Qin, C., Shu, Q. (2014) Myeloid-Derived Suppressor Cells in Sepsis. BioMed Research International, 2014: 598654
le Gall, J.R., Lemeshow, S., Saulnier, F. (1993) A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA, 270(24): 2957-63
Mathias, B., Delmas, A.L., Ozrazgat-Baslanti, T., Vanzant, E.L., Szpila, B.E., Mohr, A.M., Moore, F.A., Brakenridge, S.C., Brumback, B.A., Moldawer, L.L., Efron, P.A. (2017) Human Myeloid-derived Suppressor Cells are Associated with Chronic Immune Suppression After Severe Sepsis/Septic Shock. Annals of Surgery, 265(4): 827-834
Moreno, R., Vincent, J.L., Matos, R., Mendonça, A., Cantraine, F., Thijs, L., Takala, J., Sprung, C., Antonelli, M., Bruining, H., Willatts, S. (1999) The use of maximum SOFA score to quantify organ dysfunction/failure in intensive care: Results of a prospective, multicentre study. Intensive care medicine, 25(7): 686-96
Nagaraj, S., Collazo, M., Corzo, C.A., Youn, J.I., Ortiz, M., Quiceno, D., Gabrilovich, D.I. (2009) Regulatory Myeloid Suppressor Cells in Health and Disease. Cancer Research, 69(19): 7503-7506
Ray, A., Chakraborty, K., Ray, P. (2013) Immunosuppressive MDSCs induced by TLR signaling during infection and role in resolution of inflammation. Frontiers in Cellular and Infection Microbiology, 3: 52-52
Rhodes, A., Evans, L.E., Alhazzani, W., Levy, M.M., Antonelli, M., Ferrer, R., et al. (2017) Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med, 43(3): 304-77
Rodrigues, J.C., Gonzalez, G.C., Zhang, L., Ibrahim, G., Kelly, J.J., Gustafson, M.P., Lin, Y., Dietz, A.B., Forsyth, P.A., Yong, W.V., Parney, I.F. (2010) Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressor cell-like properties. Neuro-Oncology, 12(4): 351-365
Rodriguez, P.C., Ernstoff, M.S., Hernandez, C., Atkins, M., Zabaleta, J., Sierra, R., Ochoa, A.C. (2009) Arginase I-Producing Myeloid-Derived Suppressor Cells in Renal Cell Carcinoma Are a Subpopulation of Activated Granulocytes. Cancer Research, 69(4): 1553-1560
Sagiv, J.Y., Michaeli, J., Assi, S., Mishalian, I., Kisos, H., Levy, L., Damti, P., Lumbroso, D., Polyansky, L., Sionov, R.V., Ariel, A., Hovav, A., Henke, E., Fridlender, Z.G., Granot, Z. (2015) Phenotypic Diversity and Plasticity in Circulating Neutrophil Subpopulations in Cancer. Cell Reports, 10(4): 562-573
Sander, L.E., Sackett, S.D., Dierssen, U., Beraza, N., Linke, R.P., Müller, M., Blander, M.J., Tacke, F., Trautwein, C. (2010) Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function. Journal of Experimental Medicine, 207(7): 1453-1464
Schmielau, J., Finn, O.J. (2001) Activated granulocytes and granulocytederived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res, 61(12): 4756-60
Shankar-Hari, M., Deutschman, C.S., Singer, M. (2015) Do we need a new definition of sepsis?. Intensive Care Medicine, 41(5): 909-911
Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., Bellomo, R., Bernard, G.R., Chiche, J., Coopersmith, C.M., Hotchkiss, R.S., Levy, M.M., Marshall, J.C. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315(8): 801-10
Stanojević, I., Miller, K., Kandolf-Sekulović, L., Mijušković, Ž., Zolotarevski, L., Jović, M., Gašević, M., Đukić, M., Arsenijević, N., Vojvodić, D. (2016) A subpopulation that may correspond to granulocytic myeloid-derived suppressor cells reflects the clinical stage and progression of cutaneous melanoma. International Immunology, 28(2): 87-97
Šurbatović, M., Veljović, M., Jevđić, J., Popović, N., Đorđević, D., Radaković, S. (2013) Immunoinflammatory Response in Critically Ill Patients: Severe Sepsis and/or Trauma. Mediators Inflamm, 2013: 362793
Šurbatović, M., Radaković, S. (2013) Tumor necrosis factor-a levels early in severe acute pancreatitis: Is there predictive value regarding severity and outcome?. J Clin Gastroenterol, 47(7): 637-43
Uhel, F., Azzaoui, I., Grégoire, M., Pangault, C., Dulong, J., Tadié, J.M., Gacouin, A., Camus, C., Cynober, L., Fest, T., Le, T.Y., Roussel, M., Tarte, K. (2017) Early Expansion of Circulating Granulocytic Myeloid-derived Suppressor Cells Predicts Development of Nosocomial Infections in Patients with Sepsis. American Journal of Respiratory and Critical Care Medicine, 196(3): 315-327
Veglia, F., Perego, M., Gabrilovich, D. (2018) Myeloid-derived suppressor cells coming of age. Nature Immunology, 19(2): 108-119
Youn, J.I., Gabrilovich, D.I. (2010) The biology of myeloid-derived suppressor cells: The blessing and the curse of morphological and functional heterogeneity. European Journal of Immunology, 40(11): 2969-2975
Young, M.R., Newby, M., Wepsic, H.T. (1987) Hematopoiesis and suppressor bone marrow cells in mice bearing large metastatic Lewis lung carcinoma tumors. Cancer Res, 47(1): 100-105
Zhu, X., Pribis, J.P., Rodriguez, P.C., Morris, S.M.Jr., Vodovotz, Y., Billiar, T.R., Ochoa, J.B. (2014) The Central Role of Arginine Catabolism in T-Cell Dysfunction and Increased Susceptibility to Infection After Physical Injury. Annals of Surgery, 259(1): 171-178
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.2298/VSP180706133U
objavljen u SCIndeksu: 13.09.2020.
metod recenzije: dvostruko anoniman
Creative Commons License 4.0