Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:4
  • preuzimanja u poslednjih 30 dana:1
članak: 1 od 2  
Back povratak na rezultate
Journal of Mining and Metallurgy B: Metallurgy
2019, vol. 55, br. 1, str. 111-120
jezik rada: engleski
vrsta rada: neklasifikovan
doi:10.2298/JMMB180412011A

Creative Commons License 4.0
Fizičke osobine tankog sloja ZnO sa nano strukturom koji je nanet metodom dc magnetronskog raspršivanja u prisustvu različitih koncentarcija O2 u nosećem gasu
aIslamic Azad University, Department of Physics, West Tehran Branch, Tehran, Iran
bIslamic Azad University, Plasma physics Research Center, Science and Research Branch, Tehran, Iran

Sažetak

Tanki slojevi ZnO visokog kvaliteta sa polikristalnom heksagonalnom strukturom (101) orijentacije su naneti na Si i granulisanu staklenu podlogu putem metode reaktivnog magnetronskog raspršivanja jednosmernom strujom. Ispitivan je uticaj različitih koncentracija kiseonika u nosećem gasu na strukturne, morfološke i optičke osobine. Povećanje koncentracije O2 je dovelo do smanjenja inteziteta glavne orijentacije i pomeranja najviše vrednosti na niže 2θ vrednosti. Na slikama dobijenim skenirajućim elektronskim mikroskopom se može videti porozna struktura u obliku stuba koja se sužava koja je slična zoni 1 Torntonove strukturne zone modela kada je sadržaj O2 najviši. Na AFM slikama se može videti morfologija tankog sloja, kao i hrapavost površine na koje uticala koncentarcija O2. UV-Vis-NIR merenja su pokazala da je intezitet apsorpcije UV zraka kod uzoraka povećan i da je pomeren na kraće talasne dužine (plava svetlost) kada je koncentracija O2 bila viša. Povrh toga, optička zabranjena zona se povećala sa 3,91 na 4,41 eV kao funkcija koncentracije kiseonika.

Ključne reči

DC magnetronsko raspršivanje; porozni tanki sloj ZnO; strukturne osobine; morfološke osobine; optička zabranjena zona; apsorpcija

Reference

Abdallah, B., Jazmati, A.K., Refaai, R. (2017) Oxygen Effect on Structural and Optical Properties of ZnO Thin Films Deposited by RF Magnetron Sputtering. Materials Research, 20(3): 607-612
Ashrafi, A., Jagadish, C. (2007) Review of zincblende ZnO: Stability of metastable ZnO phases. Journal of Applied Physics, 102(7): 071101
Bhardwaj, V., Chowdhury, R., Jayaganthan, R. (2016) 4332(16), 201631670-1
Bhattacharyya, S.R., Pal, A.K. (2009) Ind. J. Pu. Appl. phys, 25-133; 1; 47
Boyadjiev, S.I., Georgieva, V., Yordanov, R., Raicheva, Z., Szilágyi, I.M. (2016) Preparation and characterization of ALD deposited ZnO thin films studied for gas sensors. Applied Surface Science, 387: 1230-1235
Dang, G.T., Kawaharamura, T., Nitta, N., Hirao, T., Yoshiie, T., Taniwaki, M. (2011) Photoluminescence, morphology, and structure of hydrothermal ZnO implanted at room temperature with 60 keV Sn + ions. Journal of Applied Physics, 109(12): 123516
Dhanalakshmi, A., Palanimurugan, A., Natarajan, B. (2017) Enhanced Antibacterial effect using carbohydrates biotemplate of ZnO nano thin films. Carbohydrate Polymers, 168: 191-200
Egelhaaf, H.-J., Oelkrug, D. (1996) Luminescence and nonradiative deactivation of excited states involving oxygen defect centers in polycrystalline ZnO. Journal of Crystal Growth, 161(1-4): 190-194
Fairose, S., Ernest, S., Daniel, S. (2018) Sens. Imaging, 19(1): 1-18
Hadjoub, I., Touam, T., Chelouche, A., Atoui, M., Solard, J., Chakaroun, M., Fischer, A., Boudrioua, A., Peng, L.H. (2016) Appl. Phys. A: Mater. Sci. Proc., 122, 78
Han, J., Fan, F., Xu, C., Lin, S., Wei, M., Duan, X., Wang, Z.L. (2010) ZnO nanotube-based dye-sensitized solar cell and its application in self-powered devices. Nanotechnology, 21(40): 405203
Ho, P.S. (1982) General aspects of barrier layers for very-large-scale integration applications I: Concepts. Thin Solid Films, 96(4): 301-316
Huaxiang, L., Ding, L., Deng, W., Wang, X., Long, J., Li, Q. (2013) Adv. Che. Eng. Sci., 3(4): 236-241
Hwang, D., Kim, K., Kim, D. (2013) High-quality nonpolar ZnO thin films grown on r-plane sapphire by radio frequency-magnetron sputtering. Thin Solid Films, 546: 18-21
Kalita, A., Karmakar, S. (2018) Int. J. Sci. Res., 6(6): 122-126
Kalita, P.K., Sarma, B. K., Das, H. L. (2000) Structural characterization of vacuum evaporated ZnSe thin films. Bulletin of Materials Science, 23(4): 313-317
Kelsey, J.E., Goldberg, C., Nuesca, G., Peterson, G., Kaloyeros, A., Arkles, B. (1999) J Vac. Sci. Technol, B 17, 1101-1104
Kwoka, M., Lyson, B., Sypien, A., Kulis, M., Maslyk, M., Borysiewicz, A., Kaminska, E., Szuber, J. (2013) Mat, 11(1), 131
Leiter, F.H., Alves, H.R., Hofstaetter, A., Hofmann, D.M., Meyer, B.K. (2001) The Oxygen Vacancy as the Origin of a Green Emission in Undoped ZnO. physica status solidi (b), 226(1): R4-R5
Li, X., Hu, Z., Liu, J., Li, D., Zhang, X., Chen, J., Fang, J. (2016) Ga doped ZnO photonic crystals with enhanced photocatalytic activity and its reaction mechanism. Applied Catalysis B: Environmental, 195: 29-38
Look, D. C., Claflin, B., Alivov, Ya. I., Park, S. J. (2004) The future of ZnO light emitters. physica status solidi (a), 201(10): 2203-2212
Lung, C., Toma, M., Pop, M., Marconi, D., Pop, A. (2017) Characterization of the structural and optical properties of ZnO thin films doped with Ga, Al and (Al+Ga). Journal of Alloys and Compounds, 725: 1238-1243
Ma, Q., Ye, Z., He, H., Hu, S., Wang, J., Zhu, L., Zhang, Y., Zhao, B. (2007) Structural, electrical, and optical properties of transparent conductive ZnO:Ga films prepared by DC reactive magnetron sputtering. Journal of Crystal Growth, 304(1): 64-68
Mccluskey, M.D., Jokela, S.J. (2009) J Appl. Phys., 106, 71101
Najim, J.A., Rozaiq, J.M. (2013) Effect Cd Doping on the Structural and Optical Properties of ZnO Thin Films. International Letters of Chemistry, Physics and Astronomy, 15: 137-150
Ozgur, U., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Doğan, S., Avrutin, V., Cho, S.J., Morkoc, H. (2005) J Appl. Phys., 98 (4): 1
Phely-Bobin, T.S., Muisener, R.J., Koberstein, J.T., Papadimitrakopoulos, F. (2001) Site-specific self-assembly of Si/SiOx nanoparticles on micropatterned poly(dimethylsiloxane) thin films. Synthetic Metals, 116(1-3): 439-443
Prathap, P., Revathi, N., Venkata, S.Y.P., Ramakrishna, R.K.T. (2007) Thickness effect on the microstructure, morphology and optoelectronic properties of ZnS films. Journal of Physics: Condensed Matter, 20(3): 035205
Purohit, A., Chander, S., Nehra, A., Nehra, S.P., Lal, C., Dhaka, M.S. (2015) Physica, E 69, 342-348
Ramani, M., Ponnusamy, S., Muthamizhchelvan, C., Cullen, J., Krishnamurthy, S., Marsili, E. (2013) Morphology-directed synthesis of ZnO nanostructures and their antibacterial activity. Colloids and Surfaces B: Biointerfaces, 105: 24-30
Sadjadi, S., Eskandari, M. (2013) Ultrasonic assisted synthesis of imidazo[1,2-a]azine catalyzed by ZnO nanorods. Ultrasonics Sonochemistry, 20(2): 640-643
Safi, I. (2000) Recent aspects concerning DC reactive magnetron sputtering of thin films: a review. Surface and Coatings Technology, 127(2-3): 203-218
Samanta, P.K., Bhunia, A.K., Kamilya, T. (2006) J Nano. Elec. Phys., 6(2): 2; 1
Sarma, H., Chakrabortty, D., Sarma, K.C. (2014) International Journal of Innovative Research in Science, Engineering and Technology, 03(10): 16957-16964
Serhane, R., Abdelli-Messaci, S., Lafane, S., Khales, H., Aouimeur, W., Hassein-Bey, A., Boutkedjirt, T. (2014) Pulsed laser deposition of piezoelectric ZnO thin films for bulk acoustic wave devices. Applied Surface Science, 288: 572-578
Shabannia, R. (2016) Synthesis and characterization of Cu-doped ZnO nanorods chemically grown on flexible substrate. Journal of Molecular Structure, 1118: 157-160
Stokes, A.R., Wilson, A.J.C. (1944) Proc. Phys. Soc., 56, 174-181
Suchea, M., Christoulakis, S., Katsarakis, N., Kitsopoulos, T., Kiriakidis, G. (2007) Comparative study of zinc oxide and aluminum doped zinc oxide transparent thin films grown by direct current magnetron sputtering. Thin Solid Films, 515(16): 6562-6566
Sun, Y., Riley, D. J., Ashfold, M.N. R. (2006) Mechanism of ZnO Nanotube Growth by Hydrothermal Methods on ZnO Film-Coated Si Substrates. Journal of Physical Chemistry B, 110(31): 15186-15192
Szyszka, B., Vergo, M., Bandorf, R., Bra, G. (2010) Vacu, 84, 1354-1359
Taneja, P., Banerjee, R., Ayyub, P., Dey, G.K. (2001) Phys. Rev. B - Cond. Matt. Mat. Phys, 64(3): 033405
Tang, Z. K., Wong, G. K. L., Yu, P., Kawasaki, M., Ohtomo, A., Koinuma, H., Segawa, Y. (1998) Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Applied Physics Letters, 72(25): 3270-3272
Thornton, J.A. (1974) Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. Journal of Vacuum Science and Technology, 11(4): 666
Viezbicke, B.D., Patel, S., Davis, B.E., Birnie, D.P. (2015) Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. physica status solidi (b), 252(8): 1700-1710
Vlasenko, L.S., Watkins, G.D. (2005) Phys. Rev. B, 72, 035203-035215
Yadav, R.P., Agarwal, D.C., Kumar, M., Rajput, P., Tomar, D.S., Pandey, S.N., Priya, P.K., Mittal, A.K. (2017) Effect of angle of deposition on the Fractal properties of ZnO thin film surface. Applied Surface Science, 416: 51-58
Yang, P., Yan, H., Mao, S., Russo, R., Johnson, J., Saykally, R., Morris, N., Pham, J., He, R., Choi, H.-J. (2002) Controlled Growth of ZnO Nanowires and Their Optical Properties. Advanced Functional Materials, 12(5): 323
Zang, Z., Wen, M., Chen, W., Zeng, Y., Zu, Z., Zeng, X., Tang, X. (2015) Strong yellow emission of ZnO hollow nanospheres fabricated using polystyrene spheres as templates. Materials & Design, 84: 418-421
Zang, Z., Tang, X. (2015) Enhanced fluorescence imaging performance of hydrophobic colloidal ZnO nanoparticles by a facile method. Journal of Alloys and Compounds, 619: 98-101
Zhang, Y., Jia, H., Li, P., Yang, F., Zheng, Z. (2011) Influence of glucose on the structural and optical properties of ZnO thin films prepared by sol-gel method. Optics Communications, 284(1): 236-239
Ziebert, C., Ulrich, S. (2006) Hard multilayer coatings containing TiN and/or ZrN: A review and recent progress in their nanoscale characterization. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 24(3): 554-583