Article metrics

  • citations in SCindeks: 0
  • citations in CrossRef:0
  • citations in Google Scholar:[=>]
  • visits in previous 30 days:7
  • full-text downloads in 30 days:6
article: 7 from 34  
Back back to result list
Zaštita materijala
2014, vol. 55, iss. 2, pp. 127-132
article language: English
document type: Review Paper
published on: 13/05/2015
doi: 10.5937/ZasMat1402127L
Organoclay-polymer nanocomposites
aDepartment of Chemical Engineering, McMaster University, Hamilton, ON, Canada
bCollege of Vocational Studies Belgrade Polytechnic, Belgrade
cUniversity of Belgrade, Technical Faculty, Bor
dUniversity of Belgrade, Faculty of Technology and Metallurgy


The properties of polymer nanocomposites exceed the properties of common composite materials due to the nanoscale size and morphology of the fillers used. Particulate fillersare commonly used in polymers forimproved mechanical and thermal properties, as well as modified electrical properties and cost reduction. Organically modified layered clays, such asmontmorillonite, are among the most widely used fillers for the improvement of polymer matrices. Presented in this review are some of the most studied clay nanocomposites including clay-polyolefin, clay-polyester and clay-thermoplastic polyurethanenanocomposites. Additionally, the properties of clay-biopolymers nanocomposites will also be discussed.


organically modified clays; montmorillonite; polymers; nanocomposites; properties


*** (2002) Encyclopedia of Polymer Science and Technology. in: Mark H.F. [ed.] Encyclopedia of polymer science and technology, John Wiley & Sons
Ataeefard, M., Moradian, S. (2011) Polypropylene/Organoclay Nanocomposites: Effects of Clay Content on Properties. Polymer-Plastics Technology and Engineering, 50(7): 732-739
Baniasadi, H., Ramazani, S.A.A., Nikkhah, S. J. (2010) Investigation of in situ prepared polypropylene/clay nanocomposites properties and comparing to melt blending method. Materials and Design, 31(1): 76-84
Barick, A.K., Tripathy, D.K. (2011) Effect of organically modified layered silicate nanoclay on the dynamic viscoelastic properties of thermoplastic polyurethane nanocomposites. Applied Clay Science, 52(3): 312-321
Barick, A.K., Tripathy, D.K. (2010) Thermal and dynamic mechanical characterization of thermoplastic polyurethane/organoclay nanocomposites prepared by melt compounding. Materials Science and Engineering: A, 527(3): 812-823
Bordes, P., Hablot, E., Pollet, E., Avérous, L. (2009) Effect of clay organomodifiers on degradation of polyhydroxyalkanoates. Polymer Degradation and Stability, 94(5): 789-796
Botana, A., Mollo, M., Eisenberg, P., Sanchez, R.M. T. (2010) Effect of modified montmorillonite on biodegradable PHB nanocomposites. Applied Clay Science, 47(3-4): 263-270
Herrera-Alonso, J.M., Marand, E., Little, J.C., Cox, S.S. (2009) Transport properties in polyurethane/clay nanocomposites as barrier materials: Effect of processing conditions. Journal of Membrane Science, 337(1-2): 208-214
Hohenberger, W. (2001) Fillers and Reinforcements/Coupling Agents. Plast. Addit. Handb Hanser
Hu, H., Onyebueke, L., Abatan, A. (2010) Characterizing and modeling mechanical properties of nanocomposites: Review and evaluation. J Miner Mater Charact Eng, 9, pp. 275-319
Kotsilkova, R. (2007) Thermoset nanocomposites for engineering applications. Smithers Rapra
LeBaron, P. (1999) Polymer-layered silicate nanocomposites: an overview. Applied Clay Science, 15(1-2): 11-29
Litchfield, D.W., Baird, D.G. (2006) The rheology of high aspect ratio nano-particle filled liquids. Rheol Rev, pp. 1-60
Liu, P. (2007) Polymer modified clay minerals: A review. Applied Clay Science, 38(1-2): 64-76
Nielsen, L.E., Landel, R.F. (1994) Mechanical Properties of Polymers Composites. CRC Press, 2nd ed
Nikolaidis, A.K., Achilias, D.S., Karayannidis, G.P. (2011) Synthesis and Characterization of PMMA/Organomodified Montmorillonite Nanocomposites Prepared by in Situ Bulk Polymerization. Industrial and Engineering Chemistry Research, 50(2): 571-579
Olewnik, E., Garman, K., Czerwiński, W. (2010) Thermal properties of new composites based on nanoclay, polyethylene and polypropylene. Journal of Thermal Analysis and Calorimetry, 101(1): 323-329
Petrović, Z.S. (2005) Polyurethanes. in: Handb. Polym. Synth, Marcel Dekker
Pinnavaia, T.J., Beall, G.W. (2000) Polymer-Clay Nanocomposites. Wiley
Rybiński, P., Janowska, G., Jóźwiak, M., Pająk, A. (2012) Thermal stability and flammability of butadiene-styrene rubber nanocomposites. Journal of Thermal Analysis and Calorimetry, 109(2): 561-571
Song, P., Cao, Z., Cai, Y., Zhao, L., Fang, Z., Fu, S. (2011) Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer, 52(18): 4001-4010
Strankowski, M. (2012) Thermoplastic polyurethane/(organically modified montmorillonite) nanocomposites produced by in situ polymerization. Express Polymer Letters, 6(8): 610-619
Wang, L., Xie, X., Su, S., Feng, J., Wilkie, C.A. (2010) A comparison of the fire retardancy of poly(methyl methacrylate) using montmorillonite, layered double hydroxide and kaolinite. Polymer Degradation and Stability, 95(4): 572-578