Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:5
  • preuzimanja u poslednjih 30 dana:5
članak: 7 od 34  
Back povratak na rezultate
Zaštita materijala
2014, vol. 55, br. 2, str. 127-132
jezik rada: engleski
vrsta rada: pregledni članak
doi:10.5937/ZasMat1402127L
Organoglina-polimerni nanokompoziti
aDepartment of Chemical Engineering, McMaster University, Hamilton, ON, Canada
bCollege of Vocational Studies Belgrade Polytechnic, Belgrade
cUniverzitet u Beogradu, Tehnički fakultet u Boru
dUniverzitet u Beogradu, Tehnološko-metalurški fakultet

Sažetak

Svojstva polimernih nanokompozita prevazilaze svojstva uobičajenih kompozitnih materijala zbog nanodimenzija i morfologije upotrebljenih punioca. Čestični punioci se uglavnom koriste u cilju poboljšnja mehaničkih i toplotnih svojstava polimera, kao i za modifikovanje električnih svojstava polimerne matrice i smanjenja cene koštanja. Organski modifikovane slojevite gline, kao što je montmorilonit, su između ostalih, najzastupljeniji punioci u upotrebi za poboljšanje svojstava polimernih matrica. Ovim preglednim radom biće prikazani najznačajniji i najviše proučavani glina-polimerni nanokompoziti, kao što su glina-poliolefini, glina-poliestar i glina-termoplastični poliuretan nanokompoziti. Takođe, svojstva biopolimer-glina nanokompozita biće predstavljena i razmatrana u radu.

Ključne reči

organski modifikovane gline; montmorilonit; polimeri; nanokompoziti; svojstva

Reference

*** (2002) Encyclopedia of Polymer Science and Technology. u: Mark H.F. [ur.] Encyclopedia of polymer science and technology, John Wiley & Sons
Ataeefard, M., Moradian, S. (2011) Polypropylene/Organoclay Nanocomposites: Effects of Clay Content on Properties. Polymer-Plastics Technology and Engineering, 50(7): 732-739
Baniasadi, H., Ramazani, S.A.A., Nikkhah, S. J. (2010) Investigation of in situ prepared polypropylene/clay nanocomposites properties and comparing to melt blending method. Materials and Design, 31(1): 76-84
Barick, A.K., Tripathy, D.K. (2011) Effect of organically modified layered silicate nanoclay on the dynamic viscoelastic properties of thermoplastic polyurethane nanocomposites. Applied Clay Science, 52(3): 312-321
Barick, A.K., Tripathy, D.K. (2010) Thermal and dynamic mechanical characterization of thermoplastic polyurethane/organoclay nanocomposites prepared by melt compounding. Materials Science and Engineering: A, 527(3): 812-823
Bordes, P., Hablot, E., Pollet, E., Avérous, L. (2009) Effect of clay organomodifiers on degradation of polyhydroxyalkanoates. Polymer Degradation and Stability, 94(5): 789-796
Botana, A., Mollo, M., Eisenberg, P., Sanchez, R.M. T. (2010) Effect of modified montmorillonite on biodegradable PHB nanocomposites. Applied Clay Science, 47(3-4): 263-270
Herrera-Alonso, J.M., Marand, E., Little, J.C., Cox, S.S. (2009) Transport properties in polyurethane/clay nanocomposites as barrier materials: Effect of processing conditions. Journal of Membrane Science, 337(1-2): 208-214
Hohenberger, W. (2001) Fillers and Reinforcements/Coupling Agents. Plast. Addit. Handb Hanser
Hu, H., Onyebueke, L., Abatan, A. (2010) Characterizing and modeling mechanical properties of nanocomposites: Review and evaluation. J Miner Mater Charact Eng, 9, pp. 275-319
Kotsilkova, R. (2007) Thermoset nanocomposites for engineering applications. Smithers Rapra
LeBaron, P. (1999) Polymer-layered silicate nanocomposites: an overview. Applied Clay Science, 15(1-2): 11-29
Litchfield, D.W., Baird, D.G. (2006) The rheology of high aspect ratio nano-particle filled liquids. Rheol Rev, pp. 1-60
Liu, P. (2007) Polymer modified clay minerals: A review. Applied Clay Science, 38(1-2): 64-76
Nielsen, L.E., Landel, R.F. (1994) Mechanical Properties of Polymers Composites. CRC Press, 2nd ed
Nikolaidis, A.K., Achilias, D.S., Karayannidis, G.P. (2011) Synthesis and Characterization of PMMA/Organomodified Montmorillonite Nanocomposites Prepared by in Situ Bulk Polymerization. Industrial and Engineering Chemistry Research, 50(2): 571-579
Olewnik, E., Garman, K., Czerwiński, W. (2010) Thermal properties of new composites based on nanoclay, polyethylene and polypropylene. Journal of Thermal Analysis and Calorimetry, 101(1): 323-329
Petrović, Z.S. (2005) Polyurethanes. u: Handb. Polym. Synth, Marcel Dekker
Pinnavaia, T.J., Beall, G.W. (2000) Polymer-Clay Nanocomposites. Wiley
Rybiński, P., Janowska, G., Jóźwiak, M., Pająk, A. (2012) Thermal stability and flammability of butadiene-styrene rubber nanocomposites. Journal of Thermal Analysis and Calorimetry, 109(2): 561-571
Song, P., Cao, Z., Cai, Y., Zhao, L., Fang, Z., Fu, S. (2011) Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer, 52(18): 4001-4010
Strankowski, M. (2012) Thermoplastic polyurethane/(organically modified montmorillonite) nanocomposites produced by in situ polymerization. Express Polymer Letters, 6(8): 610-619
Wang, L., Xie, X., Su, S., Feng, J., Wilkie, C.A. (2010) A comparison of the fire retardancy of poly(methyl methacrylate) using montmorillonite, layered double hydroxide and kaolinite. Polymer Degradation and Stability, 95(4): 572-578