Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:14
  • preuzimanja u poslednjih 30 dana:10
članak: 2 od 66  
Back povratak na rezultate
TIMS. Acta
2019, vol. 13, br. 2, str. 89-98
jezik rada: srpski
vrsta rada: pregledni članak
doi:10.5937/timsacta1902089P

Creative Commons License 4.0
Informacione tehnologije u službi modelovanja trenažnog procesa
Univerzitet EDUCONS, Fakultet za sport i turizam, Novi Sad

e-adresa: jovan.plecas@tims.edu.rs

Sažetak

Upotreba sve naprednijih informacionih tehnologija (IT) u sportu u poslednjih nekoliko decenija je dostigla visok nivo i omogućila da dobijeni podaci budu validniji, pouzdaniji i pravovremeni. Inercijalni senzori se koriste za prikupljanje informacija o kretanju sportista, brzini, ubrzanjima i pređenoj udaljenosti, a kamere koje koriste detekciju svetla za proračun 3D pozicije markera služe za snimanje i analizu pokreta i smatraju se "zlatnim standardom" u ovoj oblasti. Nosivi uređaji detektuju i analiziraju podatke u odnosu na unutrašnje ili spoljašnje parametre koje prate, pa se tako fiziološki parametri, kao što su srčana frekvencija, nivo oksidacije mišića i temperatura tela, mogu pratiti u realnom vremenu, a sve uz pomoć pametnog sata ili telefona. Virtuelna realnost je tehnologija koja pronalazi primenu u trenažnom procesu sportista, najčešće u fazama psihološke i taktičke pripreme, kao i u učenju i u uvežbavanju pokreta. Tako treneri i sportisti izvan laboratorijskih uslova mogu da, u realnom vremenu, dobiju precizne podatke i u skladu sa njima bolje planiraju i prilagođavaju trenažni proces. Cilj ovog rada je da sačini pregled upotrebe najznačajnijih informacionih tehnologija koje se koriste u modelovanju trenažnih procesa.

Ključne reči

Reference

Naknadno pridodat članak: provera, normiranje i linkovanje referenci u toku.
Austins, C. (2018, February 13). How Has Technology Changed the World in Last Two Decades. Retrieved September 17, 2018, from Linkedin: https://www.linkedin.com/pulse/how-hastechnology-changed-world-last-two-decades-calvin-austins
Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators and Virtual Environments , 6(4), 355-385
Barr, M., Beaver, T., Turczyn, D., & Cornish, S. (2019). Validity and Reliability of 15 Hz Global Positioning System Units for Assessing the Activity Profiles of University Football Players. Journal of Strength and Conditioning Research, 33(5), 1371-1379
Bayliff, G., Jacobson, B., Moghaddam, M., & Estrada, C. (2019). Global Positioning System Monitoring of Selected Physical Demands of NCAA Division I Football Players During Games. The Journal of Strength & Conditioning Research , 33(5), 1185-1191
Begon, M., Colloud, F., Fohanno, V., Bahuaud, P., & Monnet, T. (2009). Computation of the 3D kinematics in a global frame over a 40 m-long pathway using a rolling motion analysis system. Journal of Biomechanics , 42(16), 2649-2653
Bellotti, C., Calabria, E., Capelli, C., & Pogliaghi, S. (2013). Determination of Maximal Lactate Steady State in Healthy Adults: Can NIRS Help? Medicine & Science in Sports & Exercise, 45(6), 1208-1216
Bideau, B., Kulpa, R., Vignais, N., Brault, S., Multon, F., & Craig, C. (2010). Using Virtual Reality to Analyze Sports Performance. IEEE Computer Graphics and Applications , 30(2), 14-21
Bilodeau, E. A. (1969). Principles of skill acquisition. (E. A. Bilodeau, Ed.) New York: Academic Press
Borges, N., & Driller, M. (2016). Wearable Lactate Threshold Predicting Device is Valid and Reliable in Runners. Journal of Strength and Conditioning Research , 30(8), 2212-2218
Buchheit, M., Mendez-Villanueva, A., Simpson, B., & Bourdon, P. (2010). Match Running Performance and Fitness in Youth Soccer. International Journal of Sports Medicine, 31(11), 818-825
Cardinale, M., & Varley, M. C. (2017). Wearable Training-Monitoring Technology: Applications, Challenges, and Opportunities. International Journal of Sports Physiology and Performance, 12(2), 55-62
CatapultSports. (2018, November 29). OptimEye S5. Retrieved November 29, 2018, from catapultsports.com: https://www. catapultsports.com/products/optimeye-s5
Cipresso, P., Chicchi Giglioli, I. A., Raya Mariano, A., & Giuseppe, R. (2018). The Past, Present, and Future of Virtual and Augmented Reality Research: A Network and Cluster Analysis of the Literature. Frontiers in Psychology, 9, 2086
Comomilla, V., Bergamini, E., Fantozzi, S., & Vannozzi, G. (2018). Trends Supporting the In-Field Use ofWearable Inertial Sensors for Sport Performance Evaluation: A Systematic Review. Sensors, 18(3), 873
CompTIA. (2019, January 30). IT industry outlook 2019. Retrieved August 20, 2019, from CompTIA: https://www.comptia.org/ resources/it-industry-trends-analysis
Corazza, S., Mündermann, L., Gambaretto, E., Ferrigno, G., & Andriacchi, T. (2010). Markerless Motion Capture through Visual Hull, Articulated ICP and Subject Specific Model Generation. International Journal of Computer Vision , 87, 156-169
Craig, C. (2013). Understanding perception and action in sport: How can virtual reality technology help? Sports Technology, 6(4), DOI: 10.1080/19346182.2013.855224
Cummins, C., Orr, R., O'Connor, H., & West, C. (2013). Global Positioning Systems (GPS) and Microtechnology Sensors in Team Sports: A Systematic Review. Sports medicine, 43(1025)
Düking, P., Hotho, A., Holmberg, H.-C., Fuss, F. K., & Sperlich, B. (2016). Comparison of Non-Invasive Individual Monitoring of the Training and Health of Athletes with Commercially Available Wearable Technologies. Frontiers in physiology, 7(71), doi:10.3389/fphys.2016.00071
da Silva, C., Machado, G., Fernandes, A. A., Teoldo, I., Pimenta, E., Marins, J., et al. (2018). Muscle Damage-Based Recovery Strategies Can Be Supported by Predictive Capacity of Specific Global Positioning System Accelerometry Parameters Immediately a Post-Soccer Match-Load. The Journal of Strength & Conditioning Research, PAP, doi:10.1519/ JSC.0000000000002922
Farzam, P., Starkweather, Z., & Franceschini, M. A. (2018). Validation of a novel wearable, wireless technology to estimate oxygen levels and lactate threshold power in the exercising muscle. Physiological Reports, 6(7), e13664
Giblin, G., Tor, E., & Parrington, L. (2016). The impact of technology on elite sports performance. Sensoria: A Journal of Mind, Brain & Culture, 12(2), 3-9
Gradl, S., Eskofier, B., Eskofier, D., Mutschler, C., & Otto, S. (2016). Virtual and Augmented Reality in Sports -An Overview and Acceptance Study. The 2016 ACM International Joint Conference (pp. 885-888). Heidleberg, Germany: UbiComp
Hernando, D., Garatachea, N., Almeida, R., Casajus, J., & Bailón, R. (2016). Validation of Heart Rate Monitor Polar RS800 for Heart Rate Variability Analysis During Exercise. Journal of strength and conditioning research, 32(3), 716-725
Hoffmann, C. P., Filippeschi, A., Ruffaldi, E., & Bardy, B. G. (2013). Energy management using virtual reality improves 2000m rowing performance. Journal of Sports Sciences, 32(6), DOI: 10.1080/02640414.2013.835435
Hopkins, W. G. (1991). Quantification of training in competitive sports: methods and applications. Sports Medicine , 12 (3), 161-183
Huang, Y., Churches, L., & Reilly, B. (2015). A Case Study on Virtual Reality American Football Training. Proceedings of the 2015 Virtual Reality International Conference, (pp. 1-5). Laval, France
Impellizzeri, F., Rampinini, E., & Marcora, S. (2005). Physiological assessment of aerobic training in soccer. Journal of sports sciences, 23, 583-592
Johnston, R., Watsford, M., Kelly, S., Pine, M., & Spurrs, R. (2014). Validity and Interunit Reliability of 10 Hz and 15 Hz GPS Units for Assessing Athlete Movement Demands. Journal of Strength and Conditioning Research, 28 (6), 1649-1655
Joyner, M., & Coyle, E. (2007). Endurance exercise performance: the physiology of champions. The Journal of physiology , 586(1), 35-44
Katz, L., Parker, J., Tyreman, H., Kopp, G., Levy, R., & Chang, E. (2006). Virtual Reality in Sport and Wellness: Promise and Reality. International Journal of Computer Science in Sport, 4(1), 4-16
Kyriakos, T., & Yiannis, K. (2018). Validation of the Polar RS800CX for assessing heart rate variability during rest, moderate cycling and post-exercise recovery. F1000Research, 7(1501)
Luckerson, V. (2014, March 25). Facebook Buying Oculus Virtual-Reality Company for $2 Billion. Retrieved September 26, 2019, from time.com: https://time.com/37842/facebook-oculus-rift
McDuffie, J. (2017, Jun 19). Why the Military Released GPS to the Public. Retrieved Septembar 17, 2019, from Popular Mechanics: https://www.popularmechanics.com/technology/gadgets/ a26980/why-the-military-released-gps-to-the-public
McLellan, C., Lovell, D., & Gass, G. (2011). Performance Analysis of Elite Rugby League Match Play Using Global Positioning Systems. Journal of Strength and Conditioning Research, 25(6), 1703-1710
Mikami, D., Takahashi, K., Saijo, N., Isogawa, M., Kimura, T., & Kimata, H. (2018). Virtual Reality-based Sports Training System and Its Application to Baseball. NTT Techical Review, 16(3)
Mooney, M., O'Brien, B., Cormack, S., Coutts, A. J., Young, W., & Berry, J. (2011). The relationship between physical capacity and match performance in elite Australian football: A mediation approach. Journal of Science and Medicine in Sport, 14(5), 447-452
Morey Sorrentino, R., Levy, R., Katz, L., & Peng, X. (2005). Virtual Visualization: Preparation for the Olympic Games Long-Track Speed Skating. International Journal of Computer Science in Sport, 4(1), 39-44
Moxy Monitor. (2014, March). Moxy Monitor -Devices, The Science Behind Moxy. Retrieved Septembar 18, 2019, from Moxy Monitor: http://www.moxymonitor.com/wp-content/themes/ moxymonitor/documents/Moxy_Scientific_Explanation_ march2014.pdf
NASA. (2012, October 12th). Global Positioning System History. Retrieved Septembar 17, 2019, from nasa.gov: https://www. nasa.gov/directorates/heo/scan/communications/policy/ GPS_History.html
Panjkota, A., Stančić, I., & Šupuk, T. (2009). Outline of a qualitative analysis for the human motion in case of ergometer rowing. WSEAS international conference on Simulation, modelling and optimization. Budapest
Paulich, M., Schepers, M., Rudigkeit, N., & Bellusci, G. (2018). Xsens MTw Awinda: Miniature Wireless Inertial-Magnetic Motion Tracker for Highly Accurate 3D Kinematic Applications. Retrieved November 25, 2018, from Xsense: https://www. xsens.com
Perrey, S., & Ferrari, M. (2011). Muscle Oximetry in Sports Science: A Systematic Review. Sports Medicine, 48(3), 597-616
Petri, K., Danneberg, M., Dieter Ohl, C., Emmermacher, P., Masik, S., & Witte, K. (2018). Towards the Usage of Virtual Reality for Training in Sports. Biomedical Journal of Scientific & Technical Research, 7(1), DOI: 10.26717/BJSTR.2018.07.001453
Sen, Dž. (2007). Informaciona tehnologija: principi, praksa, mogućnosti. (G. Stamenković, Prev.) Beograd: Kompjuter biblioteka
Spörri, J., Schiefermüller, C., & Mülle, E. (2016). Collecting Kinematic Data on a Ski Track with Optoelectronic Stereophotogrammetry: A Methodological Study Assessing the Feasibility of Bringing the Biomechanics Lab to the Field. PLoS ONE, 11(8), doi. org/10.1371/journal.pone.0161757
StriVR. (2018, March). Guidebook download. Retrieved September 30, 2019, from strivr.com: https://www.strivr.com/wp-content/ uploads/2018/04/STRIVR_NFL-Combine-Book_FINAL2b.pdf
Sutherland, I. (1965). "The Ultimate Display". Proceedings of the IFIP Congress (pp. 506-508). OSD: ARPA
Sutherland, I. (1968). A head-mounted three dimensional display. AFIPS '68 (Fall, part I) Proceedings of the December 9-11, Fall joint computer conference, part I (pp. 757-764). New York: ACM
Thompson, W. (2017). Worldwide survey of fitness trends for 2018: The crep edition. ACSM's Health & Fitness Journal, 21(6), 10-19
Tirp, J., Steingröver, C., Wattie, N., Baker, J., & Schorer, J. (2015). Virtual realities as optimal learning environments in sport -A transfer study of virtual and real dart throwing. Psychological Test and Assessment Modeling, 57(1), 57-69
Van der Kruk, E., & Reijne, M. (2018). Accuracy of human motion capture systems for sport applications; state-of-the-art review. European Journal of Sport Science, 18, 1-14
Vicon. (2019a). Biomechanics and Sport. Retrieved February 3, 2019, from www.vicon.com: https://www.vicon.com/motioncapture/biomechanics-and-sport
Vicon. (2019b). What is motion capture -Intelligence in motion. Retrieved October 3, 2019, from vicon.com: https://www.vicon. com/about-us/what-is-motion-capture
Vignais, N., Kulpa, R., Brault, S., Presse, D., & Bideau, B. (2015). Which technology to investigate visual perception in sport: Video vs. virtual reality. Human Movement Science, 39, 12-26, DOI: 10.1016/j.humov.2014.10.006
Waldron, M., Twist, C., Highton, J., Worsfold, P., & Daniels, M. (2011). Movement and physiological match demands of elite rugby league using portable global positioning systems. Journal of Sports Sciences, 29(11), 1223-1230
Wang, B., Xu, G., Tian, Q., Sun, J., Sun, B., Zhang, L., et al. (2012). Differences between the Vastus Lateralis and Gastrocnemius Lateralis in the Assessment Ability of Breakpoints of Muscle Oxygenation for Aerobic Capacity Indices During an Incremental Cycling Exercise. Journal of sports science & medicine, 11(4), 606-613
Wiemeyer, J., & Mueller, F. (2015). Information and communication technology-enhanced learning and training. In A. Baca, & A. Baca (Ed.), Computer science in sport: research and practice (pp. 187-213). New York: Routledge
Xsense. (2018). MTw Awinda. Retrieved December 20, 2018, from www.xsens.com:https://www.xsens.com/products/mtwawinda
Zhang, L., Brunnett, G., Petri, K., Danneberg, M., Masik, S., Bandow, N., et al. (2018). KaraKter: An autonomously interacting Karate Kumite character for VR-based training and research. Computers & Graphics, 72, 59-69