Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:2
  • preuzimanja u poslednjih 30 dana:1
članak: 5 od 66  
Back povratak na rezultate
Vojnosanitetski pregled
2019, vol. 76, br. 12, str. 1284-1289
jezik rada: engleski
vrsta rada: aktuelni problemi
objavljeno: 23/01/2020
doi: 10.2298/VSP170210038V
Creative Commons License 4.0
Potencijalne implikacije epigenetskih modifikacija uzrokovanih vežbanjem
aUniverzitet u Prištini sa privremenim sedištem u Kosovskoj Mitrovici, Fakultet za sport i fizičko vaspitanje, Leposavić
bUniverzitet u Novom Sadu, Fakultet sporta i fizičkog vaspitanja
cUniversity of Zagreb, School of Dental Medicine, Department of Prosthodontics, Zagreb, Croatia
dUniverzitet u Novom Sadu, Medicinski fakultet + Univerzitet u Nišu, Fakultet sporta i fizičkog vaspitanja

e-adresa: home.vitosevic@gmail.com

Sažetak

Članak ne sadrži sažetak.

Ključne reči

epigenomika; mišić; vežbanje; geni, regulacija ekspresije; zdravlje

Reference

Baccarelli, A., Rienstra, M., Benjamin, E.J. (2010) Cardiovascular epigenetics: Basic concepts and results from animal and human studies. Circ Cardiovasc Genet, 3(6): 567-73
Barrès, R., Yan, J., Egan, B., Treebak, J.T., Rasmussen, M., Fritz, T., Caidahl, K., Krook, A., O'Gorman, D.J., Zierath, J.R. (2012) Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metabolism, 15(3): 405-411
Bartel, D.P. (2004) MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116(2): 281-97
Binder, D.K., Scharfman, H.E. (2004) Brain-derived neurotrophic factor. Growth Factors, 22(3): 123-31
Bloch, W., Suhr, F., Zimmer, P. (2012) Molecular mechanisms of exerciseinduced cardiovascular adaptations influence of epigenetics, mechanotransduction and free radicals. Herz, 37(5): 508-17
Brown, W.M. (2015) Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: A bioinformatics meta-analysis. British Journal of Sports Medicine, 49(24): 1567-1578
Czubryt, M.P., Mcanally, J., Fishman, G.I., Olson, E.N. (2003) Regulation of peroxisome proliferator-activated receptor coactivator 1 (PGC-1 ) and mitochondrial function by MEF2 and HDAC5. Proceedings of the National Academy of Sciences USA, 100(4): 1711-1716
Davids, K., Baker, J. (2007) Genes, environment and sport performance: Why the nature-nurture dualism is no longer relevant. Sports Med, 37(11): 961-80
Davidsen, P.K., Gallagher, I.J., Hartman, J.W., Tarnopolsky, M.A., Dela, F., Helge, J.W., Timmons, J.A., Phillips, S.M. (2011) High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. Journal of Applied Physiology, 110(2): 309-317
Edgett, B.A., Foster, W.S., Hankinson, P.B., Simpson, C.A., Little, J.P., Graham, R.B., Gurd, B.J. (2013) Dissociation of increases in PGC-1α and its regulators from exercise intensity and muscle activation following acute exercise. PLoS One, 8(8): e71623-e71623
Ehlert, T., Simon, P., Moser, D.A. (2013) Epigenetics in sports. Sports Medicine, 43(2): 93-110
Fernandes, T., Soci, U.P.R., Oliveira, E.M. (2011) Eccentric and concentric cardiac hypertrophy induced by exercise training: MicroRNAs and molecular determinants. Brazilian Journal of Medical and Biological Research, 44(9): 836-847
Fluck, M. (2006) Functional, structural and molecular plasticity of mammalian skeletal muscle in response to exercise stimuli. Journal of Experimental Biology, 209(Pt 12): 2239-2248
Fritz, T., Krämer, D.K., Karlsson, H.K.R., Galuska, D., Engfeldt, P., Zierath, J.R., Krook, A. (2006) Low-intensity exercise increases skeletal muscle protein expression of PPARδ and UCP3 in type 2 diabetic patients. Diabetes/Metabolism Research and Reviews, 22(6): 492-498
Galmozzi, A., Mitro, N., Ferrari, A., Gers, E., Gilardi, F., Godio, C., Cermenati, G., Gualerzi, A., Donetti, E., Rotili, D., Valente, S., Guerrini, U., Caruso, D., Mai, A., Saez, E., de Fabiani, E., Crestani, M. (2013) Inhibition of class I histone deacetylases unveils a mitochondrial signature and enhances oxidative metabolism in skeletal muscle and adipose tissue. Diabetes, 62(3): 732-742
Garatachea, N., Pareja-Galeano, H., Sanchis-Gomar, F., Santos-Lozano, A., Fiuza-Luces, C., Morán, M., Emanuele, E., Joyner, M.J., Lucia, A. (2015) Exercise attenuates the major hallmarks of aging. Rejuvenation Research, 18(1): 57-89
Herman, J.J., Spencer, H.G., Donohue, K., Sultan, S.E. (2014) How stable 'should' epigenetic modifications be?: Insights from adaptive plasticity and bet hedging. Evolution, 68(3): 632-643
Hoppeler, H., Vogt, M., Weibel, E.R., Flück, M. (2003) Response of skeletal muscle mitochondria to hypoxia. Experimental Physiology, 88(1): 109-119
Huang, Y., Pastor, W.A., Shen, Y., Tahiliani, M., Liu, D.R., Rao, A. (2010) The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS One, 5(1): e8888-e8888
Kanherkar, R.R., Bhatia-Dey, N., Csoka, A.B. (2014) Epigenetics across the human lifespan. Frontiers in Cell and Developmental Biology, 2: 49-49
Lewis, B.P., Burge, C.B., Bartel, D.P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are MicroRNA targets. Cell, 120(1): 15-20
Li, B., Carey, M., Workman, J.L. (2007) The role of chromatin during transcription. Cell, 128(4): 707-719
Lindholm, M.E., Marabita, F., Gomez-Cabrero, D., Rundqvist, H., Ekström, T.J., Tegnér, J., Sundberg, C.J. (2014) An integrative analysis reveals coordinated reprogramming of the epigenome and the transcriptome in human skeletal muscle after training. Epigenetics, 9(12): 1557-1569
Ling, C., Groop, L. (2009) Epigenetics: A molecular link between environmental factors and type 2 diabetes. Diabetes, 58(12): 2718-2725
López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M., Kroemer, G. (2013) The hallmarks of aging. Cell, 153(6): 1194-1217
Mcdonald, O.G., Owens, G.K. (2007) Programming smooth muscle plasticity with chromatin dynamics. Circulation Research, 100(10): 1428-1441
Mcdonnell, F., O'Brien, C., Wallace, D. (2014) The role of epigenetics in the fibrotic processes associated with glaucoma. Journal of Ophthalmology, 2014: 1-13, 750459
Mcgee, S.L., Hargreaves, M. (2011) Histone modifications and exercise adaptations. Journal of Applied Physiology, 110(1): 258-263, 1985
Mirbahai, L., Chipman, J.K. (2014) Epigenetic memory of environmental organisms: A reflection of lifetime stressor exposures. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 764-765: 10-17
Nakajima, K., Takeoka, M., Mori, M., Hashimoto, S., Sakurai, A., Nose, H., Higuchi, K., Itano, N., Shiohara, M., Oh, T., Taniguchi, S. (2010) Exercise effects on methylation of ASC gene. International Journal of Sports Medicine, 31(09): 671-675
Nielsen, S., Åkerström, T., Rinnov, A., Yfanti, C., Scheele, C., Pedersen, B.K., Laye, M.J. (2014) The miRNA plasma signature in response to acute aerobic exercise and endurance training. PLoS One, 9(2): e87308-e87308
Nitert, M.D., Dayeh, T., Volkov, P., Elgzyri, T., Hall, E., Nilsson, E., Yang, B.T., Lang, S., Parikh, H., Wessman, Y., Weishaupt, H., Attema, J., Abels, M., Wierup, N., Almgren, P., Jansson, P.-A., Ronn, T., Hansson, O., Eriksson, K.-F., Groop, L., Ling, C. (2012) Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes, 61(12): 3322-3332
Ntanasis-Stathopoulos, J., Tzanninis, J.G., Philippou, A., Koutsilieris, M. (2013) Epigenetic regulation on gene expression induced by physical exercise. J Musculoskelet Neuronal Interact, 13(2): 133-46
Pareja-Galeano, H., Sanchis-Gomar, F., García-Giménez, J.L. (2014) Physical exercise and epigenetic modulation: Elucidating intricate mechanisms. Sports Medicine, 44(4): 429-436
Potthoff, M.J., Wu, H., Arnold, M.A., Shelton, J.M., Backs, J., Mcanally, J., Richardson, J.A., Bassel-Duby, R., Olson, E.N. (2007) Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers. Journal of Clinical Investigation, 117(9): 2459-2467
Radak, Z., Zhao, Z., Koltai, E., Ohno, H., Atalay, M. (2013) Oxygen consumption and usage during physical exercise: The balance between oxidative stress and ROS-dependent adaptive signaling. Antioxidants & Redox Signaling, 18(10): 1208-1246
Radak, Z., Marton, O., Nagy, E., Koltai, E., Goto, S. (2013) The complex role of physical exercise and reactive oxygen species on brain. Journal of Sport and Health Science, 2(2): 87-93
Rao, P.K., Kumar, R.M., Farkhondeh, M., Baskerville, S., Lodish, H.F. (2006) Myogenic factors that regulate expression of muscle-specific microRNAs. Proceedings of the National Academy of Sciences USA, 103(23): 8721-8726
Rönn, T., Volkov, P., Davegårdh, C., Dayeh, T., Hall, E., Olsson, A.H., Nilsson, E., Tornberg, Å., Dekker, N.M., Eriksson, K., Jones, H.A., Groop, L., Ling, C. (2013) A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genetics, 9(6): e1003572-e1003572
Santos, J.M., Tewari, S., Benite-Ribeiro, S.A. (2014) The effect of exercise on epigenetic modifications of PGC1: The impact on type 2 diabetes. Medical Hypotheses, 82(6): 748-753
Sharples, A.P., Stewart, C.E., Seaborne, R.A. (2016) Does skeletal muscle have an 'epi'-memory?: The role of epigenetics in nutritional programming, metabolic disease, aging and exercise. Aging Cell, 15(4): 603-616
Song, Z., von Figura, G., Liu, Y., Kraus, J.M., Torrice, C.M., Dillon, P., Rudolph-Watabe, M., Ju, Z., Kestler, H.A., Sanoff, H., Lenhard, R.K. (2010) Lifestyle impacts on the aging-associated expression of biomarkers of DNA damage and telomere dysfunction in human blood. Aging Cell, 9(4): 607-615
van Dijk, S.J., Molloy, P.L., Varinli, H., Morrison, J.L., Muhlhausler, B.S. (2015) Epigenetics and human obesity. International Journal of Obesity, 39(1): 85-97
Vital, T.M., Stein, A.M., de Melo, C.F.G., Arantes, F.J., Teodorov, E., Santos-Galduróz, R.F. (2014) Physical exercise and vascular endothelial growth factor (VEGF) in elderly: A systematic review. Archives of Gerontology and Geriatrics, 59(2): 234-239
Voisin, S., Eynon, N., Yan, X., Bishop, D.J. (2015) Exercise training and DNA methylation in humans. Acta Physiologica, Oxf, 213(1): 39-59
Wang, X., Zhu, H., Snieder, H., Su, S., Munn, D., Harshfield, G., Maria, B.L., Dong, Y., Treiber, F., Gutin, B., Shi, H. (2010) Obesity related methylation changes in DNA of peripheral blood leukocytes. BMC Medicine, 8(1): 87-87
Zhang, H., Zhang, X., Clark, E., Mulcahey, M., Huang, S., Shi, Y.G. (2010) TET1 is a DNA-binding protein that modulates DNA methylation and gene transcription via hydroxylation of 5-methylcytosine. Cell Research, 20(12): 1390-1393
Zimmer, P., Bloch, W., Schenk, A., Zopf, E., Hildebrandt, U., Streckmann, F., Beulertz, J., Koliamitra, C., Schollmayer, F., Baumann, F. (2015) Exercise-induced natural killer cell activation is driven by epigenetic modifications. International Journal of Sports Medicine, 36(06): 510-515
Zimmer, P., Bloch, W. (2015) Physical exercise and epigenetic adaptations of the cardiovascular system. Herz, 40(3): 353-360