Metrika članka

  • citati u SCindeksu: 0
  • citati u Google Scholaru:[=>]
  • posete u prethodnih 30 dana:2
  • preuzimanja u prethodnih 30 dana:1
članak: 6 od 56  
Back povratak na rezultate
Medicinski pregled
2017, vol. 70, br. 7-8, str. 227-233
jezik rada: engleski
vrsta rada: pregledni članak
doi:10.2298/MPNS1708227P


Trening za gene - kako ga dizajnirati?
University of Novi Sad, Novi Sad, Faculty of Medicine, Department of Physiology + Faculty of Sport and Physical Education

e-adresa: jelena.popadic-gacesa@mf.uns.ac.rs

Sažetak

Uvod. Cilj ovog kratog revijalnog članka nije da bude još jedan sistematski izveštaj, već da naglasi moguće buduće istraživačke hipoteze o izazovima u genomici fizičke aktivnosti fokusirajući se na tri naučna rada objavljena 2016. godine, koji nude inovativni i obećavajući pristup koji bi mogao doneti proboj ka egzaktnijoj primeni genetskih podataka u praktičnom radu sportskih stručnjaka i dizajnu treninga. Geni za sport. Više od 200 različitih polimorfizama jednog nukleotida (single nucleotide polymorphism) i genetskih osobina udruženih sa sportskim postigućem objavljeni su u brojnim studijama, ali geni za angiotenzin-konvertujući enzim i alfa-aktinin-3 najčešće su povezivani sa poboljšanim posignućem. Perspektive u epigenetici. Interakcije između genotipa-fenotipa uključuju širok dijapazon mehanizama sa kompleksnim uticajima i međupovezanošću. 'Genu prilagođeni' trenažni protokoli. Koristeći genetsko profilisanje radi boljeg poklapanja individualnih genotipova sa odgovarajućim trenažnim modalitetima moglo bi predstavljati moćno oruđe u postizanju detaljnije personalizovanog treninga u budućnosti. Zaključak. Kada se primenjuje genetsko profilisanje pre i tokom trenažnih programa, posebnu pažnju bi trebalo obratiti na to da se izbegne njegovo korištenje u selekciji; ono se može upotrebiti samo kao uključujući kriterijum, a ne kao isključujući kriterijum. Takođe, pažnja se mora posvetiti i socijalnim i etičkim pitanjima. Širi pristup bi trebalo da uključi studije sa trenažnim intervencijama i populacije nesportista u otkrivanju novih molekularnih puteva mišićne adaptacije na fizičku aktivnost kroz interakcije genotip-fenotip.

Ključne reči

Reference

Abe, T., DeHoyos, D.V., Pollock, M.L., Garzarella, L. (2000) Time course for strength and muscle thickness changes following upper and lower body resistance training in men and women. European journal of applied physiology, 81(3): 174-80
Ahmetov, I. I., Popov, D. V., Astratenkova, I. V., Druzhevskaya, A. M., Missina, S. S., Vinogradova, O. L., Rogozkin, V. A. (2008) The use of molecular genetic methods for prognosis of aerobic and anaerobic performance in athletes. Human Physiology, 34(3): 338-342
Ahmetov, I.I., Kulemin, N., Popov, D., Naumov, V., Akimov, E., Bravy, Y., i dr. (2015) Genome-wide association study identifies three novel genetic markers associated with elite endurance performance. Biol Sport, 32(1): 3-9
Ahmetov, I.I., Fedotovskaya, O.N. (2012) Sports genomics: Current state of knowledge and future directions. Cellular and Molecular Exercise Physiology, 1(1):
Ahmetov, I.I., Rogozkin, V.A. (2009) Genes, Athlete Status and Training – An Overview. u: Collins, M. [ur.] Genetics and Sports, Basel: S. Karger AG, str. 43-71
Alejandro, L., María, M., He, Z., Jonatan, R. R. (2010) Elite Athletes: Are the Genes the Champions?. International Journal of Sports Physiology and Performance, 5(1): 98-102
Andersen, L.L., Andersen, J.L., Magnusson, S. P., Aagaard, P. (2005) Neuromuscular adaptations to detraining following resistance training in previously untrained subjects. European Journal of Applied Physiology, 93(5-6): 511-518
Barrès, R., Yan, J., Egan, B., Treebak, J., Rasmussen, M., Fritz, T., Caidahl, K., Krook, A., o`Gorman Donal J., Zierath, Juleen R. (2012) Acute Exercise Remodels Promoter Methylation in Human Skeletal Muscle. Cell Metabolism, 15(3): 405-411
Bouchard, C., Sarzynski, M. A., Rice, T. K., Kraus, W. E., Church, T. S., Sung, Y. J., Rao, D. C., Rankinen, T. (2011) Genomic predictors of the maximal O2 uptake response to standardized exercise training programs. Journal of Applied Physiology, 110(5): 1160-1170
Bray, M.S., Hagberg, J.M., Pérusse, L., Rankinen, T., Roth, S.M., Wolfarth, B., Bouchard, C. (2009) The Human Gene Map for Performance and Health-Related Fitness Phenotypes. Medicine & Science in Sports & Exercise, 41(1): 35-73
Ehlert, T., Simon, P., Moser, D.A. (2013) Epigenetics in sports. Sports medicine (Auckland, N.Z.), 43(2): 93-110
Eynon, N., Hanson, E.D., Lucia, A., Houweling, P.J., Garton, F., North, K.N., Bishop, D.J. (2013) Genes for elite power and sprint performance: ACTN3 leads the way. Sports medicine (Auckland, N.Z.), 43(9): 803-17
Gacesa, J.Z. P., Klasnja, A.V., Grujic, N.G. (2013) Changes in Strength, Endurance, and Fatigue During a Resistance-Training Program for the Triceps Brachii Muscle. Journal of Athletic Training, 48(6): 804-809
Gacesa, J.Z. P., Jakovljevic, D.G., Kozic, D.B., Dragnic, N.R., Brodie, D.A., Grujic, N.G. (2010) Morpho-functional response of the elbow extensor muscles to twelve-week self-perceived maximal resistance training. Clinical Physiology and Functional Imaging, 30(6): 413-419
Gayagay, G., Yu, B., Hambly, B., Boston, T., Hahn, A., Celermajer, D.S., Trent, R.J. (1998) Elite endurance athletes and the ACE I allele - the role of genes in athletic performance. Human Genetics, 103(1): 48-50
Goodlin, G.T., Roos, T.R., Roos, A.K., Kim, S.K. (2015) The Dawning Age of Genetic Testing for Sports Injuries. Clinical Journal of Sport Medicine, 25(1): 1-5
Jones, N., Kiely, J., Suraci, B., Collins, D., de Lorenzo, D., Pickering, C., Grimaldi, K. (2016) A genetic-based algorithm for personalized resistance-training. Biology of Sport, 33(2): 117-126
Kostek, M.C. (2005) Muscle strength response to strength training is influenced by insulin-like growth factor 1 genotype in older adults. Journal of Applied Physiology, 98(6): 2147-2154
Kostek, M., Hubal, M.J., Pescatello, L.S. (2007) Genetic Roles in Muscle Strength. ACSM's Health & Fitness Journal, 11(2): 18-23
Kraemer, W.J., Patton, J.F., Gordon, S.E., Harman, E.A., Deschenes, M.R., Reynolds, K., i dr. (1995) Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J Appl Physiol, 78(3): 976-89
Kraemer, W.J., Fleck, S.J., Evans, W.J. (1996) Strength and Power Training. Exercise and Sport Sciences Reviews, 24: 363-398
Kraemer, W.J., Ratamess, N.A. (2005) Hormonal Responses and Adaptations to Resistance Exercise and Training. Sports Medicine, 35(4): 339-361
Lippi, G., Solero, G.P., Guidi, G. (2004) Athletes Genotyping: Ethical and Legal Issues. International Journal of Sports Medicine, 25(2): 159-159
Loos, R.J. F., Hagberg, J.M., Pérusse, L., Roth, S.M., Sarzynski, M.A., Wolfarth, B., Rankinen, T., Bouchard, C. (2015) Advances in Exercise, Fitness, and Performance Genomics in 2014. Medicine & Science in Sports & Exercise, 47(6): 1105-1112
Ma, F., Yang, Y., Li, X., Zhou, F., Gao, C., Li, M., Gao, L. (2013) The association of sport performance with ACE and ACTN3 genetic polymorphisms: a systematic review and meta-analysis. PLoS One, 8(1): e54685
Macarthur, D.G., North, K.N. (2005) Genes and human elite athletic performance. Human Genetics, 116(5): 331-339
MacArthur, D.G., Seto, J.T., Chan, S., Quinlan, K.G.R., Raftery, J.M., Turner, N., Nicholson, M.D., Kee, A.J., Hardeman, E.C., Gunning, P.W., Cooney, G.J., Head, S.I., Yang, N., North, K.N. (2008) An Actn3 knockout mouse provides mechanistic insights into the association between alpha-actinin-3 deficiency and human athletic performance. Human molecular genetics, 17(8): 1076-86
Mazzetti, S.A., Kraemer, W.J., Volek, J.S., Duncan, N.D., Ratamess, N.A., Gomez, A.L., Newton, R.U., Hokkinen, K., Fleck, S.J. (2000) The influence of direct supervision of resistance training on strength performance. Medicine & Science in Sports & Exercise, 32(6): 1175-1184
Mcnamee, M.J., Müller, A., van Hilvoorde, I., Holm, S. (2009) Genetic Testing and Sports Medicine Ethics. Sports Medicine, 39(5): 339-344
Montgomery, H. E., Marshall, R., Hemingway, H., Myerson, S., Clarkson, P., Dollery, C., Hayward, M., Holliman, D. E., Jubb, M., World, M., Thomas, E. L., Brynes, A. E., Saeed, N., Barnard, M., Bell, J. D., Prasad, K., Rayson, M., Talmud, P. J., Humphries (1998) Human gene for physical performance. Nature, 393(6682): 221-222
Murphey, L. J., Gainer, J. V., Vaughan, D. E., Brown, N. J. (2000) Angiotensin-Converting Enzyme Insertion/Deletion Polymorphism Modulates the Human In Vivo Metabolism of Bradykinin. Circulation, 102(8): 829-832
North, K.N., Yang, N., Wattanasirichaigoon, D., Mills, M., Easteal, S., Beggs, A.H. (1999) Nature Genetics, 21(4): 353-354
Pérusse, L., Rankinen, T., Hagberg, J.M., Loos, R.J. F., Roth, S.M., Sarzynski, M.A., Wolfarth, B., Bouchard, C. (2013) Advances in Exercise, Fitness, and Performance Genomics in 2012. Medicine & Science in Sports & Exercise, 45(5): 824-831
Popadic, G.J.Z., Secher, N.H., Momcilovic, M., Grujic, N.G. (2014) Association between intramuscular fat in the arm following arm training and INSIG2. Scandinavian journal of medicine & science in sports, 24(6): 907-12
Popadic, G.J.Z., Momcilovic, M., Veselinovic, I., Brodie, D.A., Grujic, N.G. (2012) Bradykinin type 2 receptor -9/-9 genotype is associated with triceps brachii muscle hypertrophy following strength training in young healthy men. BMC Musculoskeletal Disorders, 13(1): 217
Popadic, G.J.Z., Kozic, D.B., Dragnic, N.R., Jakovljevic, D.G., Brodie, D.A., Grujic, N.G. (2009) Changes of functional status and volume of triceps brachii measured by magnetic resonance imaging after maximal resistance training. Journal of Magnetic Resonance Imaging, 29(3): 671-676
Popadic, G.J.Z., Kozic, D.B., Dusko, K.B., Grujic, N.G. (2011) Triceps brachii strength and regional body composition changes after detraining quantified by MRI. Journal of magnetic resonance imaging, 33(5): 1114-20
Puthucheary, Z., Skipworth, J.R.A., Rawal, J., Loosemore, M., van Someren, K., Montgomery, H.E. (2011) The ACE gene and human performance: 12 years on. Sports medicine (Auckland, N.Z.), 41(6): 433-48
Rankinen, T., Bray, M.S., Hagberg, J.M., Perusse, L., Roth, S.M., Wolfarth, B., Bouchard, C. (2006) The Human Gene Map for Performance and Health-Related Fitness Phenotypes. Medicine & Science in Sports & Exercise, 38(11): 1863-1888
Rankinen, T., Roth, S.M., Bray, M.S., Loos, R., Pérusse, L., Wolfarth, B., Hagberg, J.M., Bouchard, C. (2010) Advances in exercise, fitness, and performance genomics. Medicine and science in sports and exercise, 42(5): 835-46
Rankinen, T., Fuku, N., Wolfarth, B., Wang, G., Sarzynski, M.A., Alexeev, D.G., Ahmetov, I.I., Boulay, M.R., Cieszczyk, P., Eynon, N., Filipenko, M.L., Garton, F.C., Generozov, E.V., Govorun, V.M., Houw (2016) No Evidence of a Common DNA Variant Profile Specific to World Class Endurance Athletes. PLoS One, 11(1): e0147330
Rees, T., Hardy, L., Güllich, A., Abernethy, B., Côté, J., Woodman, T., Montgomery, H., Laing, S., Warr, C. (2016) The Great British Medalists Project: A Review of Current Knowledge on the Development of the World's Best Sporting Talent. Sports medicine (Auckland, N.Z.), 46(8): 1041-58
Wang, G., Padmanabhan, S., Wolfarth, B., Fuku, N., Lucia, A., Ahmetov, I.I., Cieszczyk, P., Collins, M., Eynon, N., Klissouras, V., Williams, A., Pitsiladis, Y. (2013) Genomics of Elite Sporting Performance. Elsevier, str. 123-149
Wicklmayr, M., Dietze, G., Brunnbauer, H., Rett, K., Mehnert, H. (1983) Dose-dependent effect of bradykinin on muscular blood flow and glucose uptake in man. Hoppe-Seyler's Zeitschrift fur physiologische Chemie, 364(7): 831-3
Williams, A. G. (2003) Bradykinin receptor gene variant and human physical performance. Journal of Applied Physiology, 96(3): 938-942
Yang, N., MacArthur, D.G., Gulbin, J.P., Hahn, A.G., Beggs, A.H., Easteal, S., North, K. (2003) ACTN3 Genotype Is Associated with Human Elite Athletic Performance. American Journal of Human Genetics, 73(3): 627-631