Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:1
  • preuzimanja u poslednjih 30 dana:0

Sadržaj

članak: 3 od 103  
Back povratak na rezultate
2020, vol. 56, br. 2, str. 209-220
Procena kvaliteta zavarenog spoja od ploča otpornih na abraziono habanje
Silesian University of Technology, Department of Welding Engineering, Gliwice, Poland

e-adresajacek.gorka@polsl.pl
Projekat:
This work was funded through the following research grant: Rector's pro-quality grant, 2019, Silesian University of Technology in Gliwice

Ključne reči: Abrazija; Ploče otporne na abraziono habanje; Zavarivanje; Nanokristalna metalna ispuna
Sažetak
U ovom članku se predstavlja analiza strukture i osobina zavarenih spojeva od ploča otpornih na abraziono habanje koji imaju strukturu hromiranog livenog gvožđa i zavareni su metalno punjenim žicama, a koji se upotrebljavaju da bi obezbedili visoku otpornost na abraziono habanje površinskog sloja kao i dobre mehaničke osobine osnovnog materijala. Lice zavarenog spoja napravljeno je MMA (Ručno elektrolučno zavarivanje) metodom zavarivanja i metalno punjenim žicama sa nanokristalnom Fe-Cr-Nb-B ispunom. Koreni zavar spoja je zavaren austentnim ispunom, dok je zavar ispune zavaren korišćenjem MAG metode i niskolegiranom ispunom. Spojevi su izloženi nerazarajućim metodama ispitivanja (vizuelno ispitivanje i ispitivanje penetrantima) kao i testovima ispitivanja mehaničkih osobina. Istraživanje je uključivalo i makroskopska i mikroskopska metalografska ispitivanja, određivanje veličine zrna korišćenjem Xpert PRO X-ray difraktometra, i EDS analizu hemijskog sastava taloga. Procena radnih karakteristika zavarenih spojeva zasnovana je na merenjima tvrdoće, statičkim ispitivanjima istezanja i savijanja, kao i identifikovanjem otpornosti na abraziono habanje metala-minerala koje je urađeno u skladu sa ASTM G65 - 04 standardima. Rezultati ispitivanja otpornosti na abraziono habanje odnosile su se na čelik HARDOX 400 koji je bio referentni uzorak. Iz rezultata ispitivanja zaključeno je da korišćeni materijal za ispunu može da obezbedi odgovarajuće radne karakteristike zavarenih ploča otpornih na abraziono habanje.
Reference
Adamiak, M., Tomiczek, B., Górka, J., Czupryński, A. (2016) Joining of the AMC Composites Reinforced with Ti3Al Intermetallic Particles by Resistance Butt Welding. Archives of Metallurgy and Materials, 61(2): 847-852
Boncel, S., Górka, J., Shaffer, M.S.P., Koziol, K.K.K. (2014) Shear-induced crystallisation of molten isotactic polypropylene within the intertube channels of aligned multi-wall carbon nanotube arrays towards structurally controlled composites. Materials Letters, 116: 53-56
Boncel, S., Górka, J., Shaffer, M.S.P., Koziol, K.K.K. (2014) 'Binary salt' of hexane-1,6-diaminium adipate and 'carbon nanotubate' as a synthetic precursor of carbon nanotube/Nylon-6,6 hybrid materials. Polymer Composites, 35(3): 523-529
Burdzik, R., Konieczny, Ł., Stanik, Z., Folęga, P., Smalcerz, A., Lisiecki, A. (2014) Analysis of Impact of Chosen Parameters on the Wear of Camshft. Archives of Metallurgy and Materials, 59(3): 957-963
Chen, W.X., Tu, J.P., Wang, L.Y., Gan, H.Y., Xu, Z.D., Zhang, X.B. (2003) Tribological application of carbon nanotubes in a metal-based composite coating and composites. Carbon, 41(2): 215-222
Chmielewski, T., Golański, D., Włosiński, W. (2015) Metallization of ceramic materials based on the kinetic energy of detonation waves. Bulletin of the Polish Academy of Sciences Technical Sciences, 63(2): 449-456
Chmielewski, T., Golański, D., Włosiński, W., Zimmerman, J. (2015) Utilizing the energy of kinetic friction for the metallization of ceramics. Bulletin of the Polish Academy of Sciences Technical Sciences, 63(1): 201-207
Chmielewski, T., Golański, D.A. (2011) New method of in-situ fabrication of protective coatings based on Fe-Al intermetallic compounds. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225(4): 611-616
Czupryński, A., Górka, J., Adamiak, M., Tomiczek, B. (2016) Arch. Metall. Mater, 61: 1017-1023
Czupryński, A., Górka, J., Adamiak, M. (2016) Metalurgija, 55, 173-176
Esawi, A.M.K., Farag, M.M. (2007) Carbon nanotube reinforced composites: Potential and current challenges. Materials & Design, 28(9): 2394-2401
Golański, D., Dymny, G., Kujawińska, M., Chmielewski, T. (2015) Experimental Investigation of Displacement/Strain Fields in Metal Coatings Deposited on Ceramic Substrates by Thermal Spraying. Solid State Phenomena, 240: 174-182
Górka, J., Kik, T., Czupryński, A., Foreiter, W. (2014) Technology of welding hard wearing plates. Welding International, 28(10): 749-755
Górka, J., Czupryński, A. (2015) Testing of Flame Sprayed ZrO2 Matrix Coatings Containing CaO. Applied Mechanics and Materials, 809-810: 501-506
Grajcar, A., Różański, M., Stano, S., Kowalski, A. (2014) Microstructure Characterization of Laser-Welded Nb-Microalloyed Silicon-Aluminum TRIP Steel. Journal of Materials Engineering and Performance, 23(9): 3400-3406
Grigoroudis, K., Stephenson, D.J. (1997) Modelling low stress abrasive wear. Wear, 213(1-2): 103-111
Heath, G. (2006) The Castolin-Eutectic Seminar, Brussels, Belgium, Proceedings of. 15-19
Igwemezie, V.C., Ugwuegbu, C.C. (2014) Development of nanostructured steel for engineering application. International Journal of Nano and Biomaterials, 5(2/3): 125-151
Janicki, D. (2013) Solid State Phenomena, 199: 587-592
Kato, K. (1997) Abrasive wear of metals. Tribology International, 30(5): 333-338
Kik, T., Moravec, J., Novakova, D. (2019) Arch. Metall. Mater, 64 (4), 1441-1448
Klimpel, A., Czupryński, A., Górka, J., Kik, T., Melcer, M. (2014) A study of modern materials for arc spraying. Welding International, 28(2): 100-106
Laha, T., Kuchibhatla, S., Seal, S., Li, W., Agarwal, A. (2007) Interfacial phenomena in thermally sprayed multiwalled carbon nanotube reinforced aluminum nanocomposite. Acta Materialia, 55(3): 1059-1066
Lisiecki, A. (2015) Titanium Matrix Composite Ti/TiN Produced by Diode Laser Gas Nitriding. Metals, 5(1): 54-69
Ma, X., Liu, R., Li, D.Y. (2000) Abrasive wear behavior of D2 tool steel with respect to load and sliding speed under dry sand/rubber wheel abrasion condition. Wear, 241(1): 79-85
Masen, M.A., de Rooij, M.B., Schipper, D.J. (2005) Micro-contact based modelling of abrasive wear. Wear, 258(1-4): 339-348
Mbabazi, J.G., Sheer, T.J., Shandu, R. (2004) A model to predict erosion on mild steel surfaces impacted by boiler fly ash particles. Wear, 257(5-6): 612-624
Poole, C.P., Ownes, F.J. (2003) Introduction to Nanotechnology. Hoboken, NJ: Wiley, 1-8
Reisgen, U., Stein, L., Balashov, B., Geffers, C. (2008) Nanophase hardfaced coatings. Materialwissenschaft und Werkstofftechnik, 39(11): 791-794
Sevostianov, I., Kachanov, M. (2007) Effect of interphase layers on the overall elastic and conductive properties of matrix composites: Applications to nanosize inclusion. International Journal of Solids and Structures, 44(3-4): 1304-1315
Stachowiak, G. (2000) Particle angularity and its relationship to abrasive and erosive wear. Wear, 241(2): 214-219
Sundararajan, G., Roy, M. (1997) Solid particle erosion behaviour of metallic materials at room and elevated temperatures. Tribology International, 30(5): 339-359
Wagner, D.H., Vaia, R.A. (2004) Nanocomposites: Issues at the interface. Materials Today, 7(11): 38-42
Włosiński, W., Chmielewski, T. (2002) International Conference on Surface Engineering (3rd), Southwest Jiaotong University Press, Chengdu, Sichuan, China. 48-53
Yao, J., Zhang, Q., Gao, M., Zhang, W. (2008) Microstructure and wear property of carbon nanotube carburizing carbon steel by laser surface remelting. Applied Surface Science, 254(21): 7092-7097
Zum, G.K.H. (1998) Wear by hard particles. Tribology International, 31(10): 587-596
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.2298/JMMB190515010G
objavljen u SCIndeksu: 18.09.2020.
metod recenzije: jednostruko anoniman
Creative Commons License 4.0

Povezani članci

FME Transactions (2020)
Nanotvrdoća i habanje nanokompozita na bazi bakra ojačanih sa SiC i CNT
Mallikarjuna H.M., i dr.