Metrics

  • citations in SCIndeks: 0
  • citations in CrossRef:0
  • citations in Google Scholar:[]
  • visits in previous 30 days:7
  • full-text downloads in 30 days:3

Contents

article: 1 from 4  
Back back to result list
2018, vol. 66, iss. 1, pp. 1-8
Some critical remarks on the paper “A note on the metrizability of tvs-cone metric spaces”
aUniversity of Kragujevac, Faculty of Science, Department of Mathematics and Informatics, Serbia
bUniversity of Priština - Kosovska Mitrovica, Faculty of Teacher Education, Prizren-Leposavić, Serbia
cUniversity of Belgrade, Faculty of Mechanical Engineering, Serbia
dUniversity of Palermo, Department of Energy, Information Engineering and Mathematical Models (DEIM), Palermo, Italy

emailsuzanasimic@kg.ac.rs, ljiljana.paunovic76@gmail.com, radens@beotel.net, francesca.vetro@unipa.it
Project:
Methods of Functional and Harmonic Analysis and PDE with Singularities (MESTD - 174024)
Methods of Numerical and Nonlinear Analysis with Applications (MESTD - 174002)

Keywords: tvs-cone metric space; metrizable; solid; normal; non-normal
Abstract
This short and concise note provides a detailed exposition of the approach and results established by (Lin et al, 2015, pp.271-279). We show that the obtained results are not particularly surprising and new. Namely, using an old result due to K. Deimling it is indicated that tvs-cone metric spaces over solid cones are actually cone metric spaces over normal solid cones. Hence, there are only cone metric spaces over normal solid cones or over normal non-solid cones. One question still unanswered is whether an ordered topological vector space with a non-normal non-solid cone exists.
References
Alnafei, S.H., Radenović, S., Shahzad, N. (2011) Fixed point theorems for mappings with convex diminishing diameters on cone metric spaces. Appl. Math. Lett, 24 (2), pp.2162-2166. Available at: https://doi.org/10.1016/j.aml.2011.06.019
Amini-Harandi, A., Fakhar, M. (2010) Fixed point theory in cone metric spaces obtained via the scalarization method. Comput. Math. Appl, 59(11), pp. 3529-3534, https://doi.org/10.1016/j.camwa.2010.03.046
Ansari, A.H., Chandok, S., Hussain, N., Paunović, L. (2016) Fixed point of weak contractions in regular cone. Journal of Advanced Mathematical Studies, 9(1), pp. 72-82
Deimling, K. (1985) Nonlinear functional analysis. Springer Verlag
Du, W.S. (2010) A note on cone metric fixed point theory and its equivalence. Nonlinear Anal, 72 (5), pp.2259-2261. Available at: https://doi.org/10.1016/j.na.2009.10.026
Đorđević, M., Đorić, D., Kadelburg, Z., Radenović, S., Spasić, D. (2011) Fixed point results under C-distance in TVS-cone metric spaces. Fixed Point Theory and Applications, 2011:29. Available at: https://doi.org/10.1186/1687-1812-2011-29
Filipović, M., Paunović, Lj., Radenović, S., Rajović, M. (2011) Remarks on 'Cone metric spaces and fixed point theorems of T-Kannan contractive mappings'. Mathematical and Computer Modelling, 54 (5-6)
Huang, L., Zhang, X. (2007) Cone metric spaces and fixed point theorems of contractive mappings. Journal of Mathematical Analysis and Applications, 332(2): 1468-1476
Jachymski, J., Klima, J. (2016) Cantor's intersection theorem for K-metric spaces with a solid cone and a contraction principle. J. Fixed Point Theory Appl, 18 (3), pp.445-463. Available at: https://doi.org/10.1007/s11784-016-0312-1
Janković, S., Kadelburg, Z., Radenović, S. (2011) On cone metric spaces: A survey. Nonlinear Anal, 74 (7), pp.2591-2601. Available at: https://doi.org/10.1016/j.na.2010.12.014
Kadelburg, Z., Paunović, Lj., Radenović, S., Rad, S.G. (2016) Non-normal cone metric and cone b-metric spaces and fixed point results. Scientific Publications of the State University of Novi Pazar Series A: Applied Mathematics, Informatics and mechanics, vol. 8, br. 2, str. 177-186
Kadelburg, Z., Radenović, S., Rakočević, V. (2011) A note on the equivalence of some metric and cone metric fixed point results. Applied Mathematics Letters, 24(3): 370-374
Khani, M., Pourmahdian, M. (2011) On the metrizability of cone metric space. Topology Appl, 158 (2), pp.190-193
Köthe, G. (1969) Topological Vector Spaces I. New York: Springer-Verlag, Inc
Lin, S., Li, K., Ge, Y. (2015) On the metrizability of tvs-cone metric spaces. Publication de l’Institut Mathématique, Nouvelle série, tome 98(112), pp. 271-279, https://doi.org/10.2298/PIM1512271L
Radenović, S., Vetro, F., Xu, S. (2017) Some new results on perov type mappings. J. Adv. Math. Stud., 10(3), pp. 396-409
Schaefer, H.H. (1971) Topological vector spaces. Berlin: Springer
Simić, S. (2011) A note on Stone’s, Baire’s, Ky Fan’s and Dugundji’s theorem in tvs-cone metric spaces. Appl. Math. Lett, 24(6), pp. 999-1002, https://doi.org/10.1016/j.aml.2011.01.014
Vandergraft, J.S. (1967) Newton's method for convex operators in partially ordered spaces. SIAM J. Num. Anal, Anal. 4 (3), pp.406-432. Available at: https://doi.org/10.1137/0704037
Wong, Y.C., Ng, K.F. (1973) Partially Ordered Topological Vector Spaces. Oxford: Claredon Press
Xu, S., Dolićanin, Ć., Radenović, S. (2016) Some remarks on results of Perov type. J. Adv. Math. Stud., 9 (3), pp. 361-369
Xu, S., Radenović, S. (2014) Fixed point theorems of generalized Lipschitz mappings on cone metric spaces over Banach algebras without assumption of normality. Fixed Point Theory Appl, 2014:102. Available at: https://doi.org/10.1186/1687-1812-2014-102
Zabrejko, P.P. (1997) K-metric and K-normed linear spaces, survey. Collect. Math, 48, pp. 825-859
 

About

article language: English
document type: Original Scientific Paper
DOI: 10.5937/vojtehg66-15128
published in SCIndeks: 08/01/2018
peer review method: double-blind
Creative Commons License 4.0

Related records

No related records