Akcije

Scientific Publications of the State University of Novi Pazar Series A: Applied Mathematics, Informatics and mechanics
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: [1]
  • citati u CrossRef-u:[2]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:5
  • preuzimanja u poslednjih 30 dana:5

Sadržaj

članak: 2 od 4  
Back povratak na rezultate
Non-normal cone metric and cone b-metric spaces and fixed point results
(naslov ne postoji na srpskom)
aUniverzitet u Beogradu, Matematički fakultet
bUniverzitet u Prištini sa privremenim sedištem u Kosovskoj Mitrovici, Učiteljski fakultet, Prizren-Leposavić
cDžavni univerzitet u Novom Pazaru
dYoung Researchers and Elite club, Central Tehran Branch, Islamic Azad University, Tehran, Iran
Ključne reči: topological vector space; ordered normed space; cone metric space; b-metric space; tvs-cone b-metric space; Minkowski functional
Sažetak
(ne postoji na srpskom)
We show that most fixed point results obtained so far in cone metric spaces over solid non-normal cones can be easily reduced to the case of solid normal cones and, hence, their proofs can be made much simpler. Also, cone tvs-valued spaces over solid cones are not an essential generalization of cone metric spaces. These results are consequences of the simple fact that each solid cone in a topological vector space is in fact normal under a suitably defined norm. The proof follows by using the technique of Minkowski functional. As an application of these results, we prove an extension of the classical Nemytzki-Edelstein fixed point result to (tvs)-(b)-cone metric spaces over solid cones.
Reference
Aliprantis, C.D., Tourky, R. (2007) Cones and duality. Providence: American Mathematical Society, Graduate Studies in Mathematics 84
Amini-Harandi, A., Fakhar, M. (2010) Fixed point theory in cone metric spaces obtained via the scalarization method. Computers & Mathematics with Applications, 59(11): 3529-3534
Bakhtin, I.A. (1989) The contraction mapping principle in quasi-metric spaces. Funct. Anal. Ulianowsk Gos. Ped. Inst., 30, 26-37
Beg, I., Azam, A., Arshad, M. (2009) Common Fixed Points for Maps on Topological Vector Space Valued Cone Metric Spaces. International Journal of Mathematics and Mathematical Sciences, 2009: 1-8
Çakallı, H., Sönmez, A., Genç, Ç. (2012) On an equivalence of topological vector space valued cone metric spaces and metric spaces. Applied Mathematics Letters, 25(3): 429-433
Cosentino, M., Salimi, P., Vetro, P. (2014) Fixed point results on metric-type spaces. Acta Mathematica Scientia, 34(4): 1237-1253
Cvetković, A.S., Stanić, M.P., Dimitrijević, S., Simić, S. (2011) Common Fixed Point Theorems for Four Mappings on Cone Metric Type Space. Fixed Point Theory and Applications, 2011: 1-15
Czerwik, S. (1993) Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostraviensis, 1, 5-11
Deimling, K. (1985) Nonlinear functional analysis. Springer Verlag
Du, W. (2010) A note on cone metric fixed point theory and its equivalence. Nonlinear Analysis: Theory, Methods & Applications, 72(5): 2259-2261
Du, W., Karapınar, E. (2013) A note on cone b-metric and its related results: generalizations or equivalence?. Fixed Point Theory and Applications, 2013(1): 210
Edelstein, M. (1961) An extension of Banach's contraction principle. Proc. Amer. Math. Soc., 12: 7
Farajzadeh, A.P., Amini-Harandi, A., Baleanu, D. (2012) Fixed point theory for generalized contractions in cone metric spaces. Communications in Nonlinear Science and Numerical Simulation, 17(2): 708-712
Feng, Y., Mao, W. (2010) The equivalence of cone metric spaces and metric spaces. Fixed Point Theory, 11 (2); 259-26
Huang, L., Zhang, X. (2007) Cone metric spaces and fixed point theorems of contractive mappings. Journal of Mathematical Analysis and Applications, 332(2): 1468-1476
Hussain, N., Shah, M.H. (2011) KKM mappings in cone Computers & Mathematics with Applications, 62(4): 1677-1684
Hussain, N., Parvaneh, V., Roshan, J., Kadelburg, Z. (2013) Fixed points of cyclic weakly (ψ,φ,L,A,B)-contractive mappings in ordered b-metric spaces with applications. Fixed Point Theory and Applications, 2013(1): 256
Janković, S., Kadelburg, Z., Radenović, S. (2011) On cone metric spaces: A survey. Nonlinear Analysis: Theory, Methods & Applications, vol. 74, br. 7, str. 2591-2601
Kadelburg, Z., Radenović, S., Rakočević, V. (2011) A note on the equivalence of some metric and cone metric fixed point results. Applied Mathematics Letters, 24(3): 370-374
Kadelburg, Z., Radenović, S., Rakočević, V.R. (2010) Topological vector space-valued cone metric spaces and fixed point theorems. Fixed Point Theory Appl., Art. ID 170253, 17 pp
Khamsi, M. A., Wojciechowski, P.J. (2013) On the Additivity of the Minkowski Functionals. Numerical Functional Analysis and Optimization, 34(6): 635-647
Khani, M., Pourmahdian, M. (2011) On the metrizability of cone metric spaces. Topology and its Applications, 158(2): 190-193
Krein, M. (1940) Proprietes fondamentales des ensembles coniques normaux dans 1 espace de Banach. C.R. (Doklady) Acad. Sci. URSS, N.S.) 28, 13-17
Kreĭn, M.G., Rutman, M.A. (1948) Linear operators leaving invariant a cone in a Banach spaces. Uspekhi Mat. Nauk, [in Russian], (N.S.) 3 (1), 3-95
Kurepa, Đ.R. (1934) Tableaux ramifiés d'ensembles. Espaces pseudo-distanciés. Comptes Rend Acad Sci, Paris, 198, 1563-1565
Nemytzki, V.V. (1936) The fixed point method in analysis. Uspekhi Mat. Nauk., 1, 141-174; in Russian
Proinov, P.D. (2013) A unified theory of cone metric spaces and its applications to the fixed point theory. Fixed Point Theory and Applications, 2013(1): 103
Rezapour, S., Hamlbarani, R. (2008) Some notes on the paper 'Cone metric spaces and fixed point theorems of contractive mappings'. Journal of Mathematical Analysis and Applications, 345(2): 719
Schaefer, H.H. (1971) Topological vector spaces. Berlin: Springer
van Dung, N., Hang, V.T.L. (2015) On relaxations of contraction constants and Caristi’s theorem in b-metric spaces. Journal of Fixed Point Theory and Applications, 18(2): 267-284
Yau-Chuen, W., Kung-Fu, N.G. (1973) Partially ordered topological vector spaces. Oxford: Clarendon Press
Zabrejko, P.P. (1997) K-metric and K-normed linear spaces: Survey. Collect. Math, 48 (4-6), 825-859
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/SPSUNP1602177K
objavljen u SCIndeksu: 18.11.2016.

Povezani članci

Nema povezanih članaka