Article metrics

  • citations in SCindeks: [1]
  • citations in CrossRef:0
  • citations in Google Scholar:[=>]
  • visits in previous 30 days:63
  • full-text downloads in 30 days:36
article: 1 from 1  
Back back to result list
Specijalna edukacija i rehabilitacija
2015, vol. 14, iss. 4, pp. 473-495
article language: Serbian
document type: Original Scientific Paper

Defined hangrip force / differences and error variability in healthy adults
aVisoka zdravstvena škola strukovnih studija u Beogradu
bUniversity of Belgrade, Faculty of Sports and Physical Education
cUniversity of Belgrade, Faculty for Special Education and Rehabilitation
dFakultet za sport Univerzitet 'Union-Nikola Tesla', Beograd



Effects of the Applied Physical Activity to Locomotor, Metabolic, Psycho-Social and Educational Status of the Population of the Republic of Serbia (MESTD - 47015)


Assessment of the intensity of hand grip force is applied in different areas of research activities. Generally researchers test the maximum intensity of the hand grip force, while the respondents are less frequently asked to achieve the defined intensity of force without visual feedback. This study aims to determine the differences in error variabilities in achieving the defined hand grip force, without the visual feedback, in healthy adults of both sexes. A standardized test - the handgrip test was used for the purpose of this study. Forty participants took part in this study, 19 women and 21 men, with the median age of 37. ANOVA and t-test were used in order to determine the differences in the manifestation of errors of hand grip force, within and between the subject groups. A statistically significant difference in the manifestation of errors within the group of male subjects appeared at 10% of the maximum grip force, whereas the female group demonstrated it at 90% of the maximum force. Between both groups, a significant difference in the manifestation of errors manifested at 90% of the maximum force of the left non-dominant hand. Subjects of both sexes have erred at lower defined levels of force, while at submaximal levels, errors decreased significantly. In general, male subjects were more accurate than female. Moreover, there was a statistically significant difference in the attainment of maximum force in both hands between men and women. The results can be used as an indicator for further research in special education and rehabilitation, as well as in medical and vocational rehabilitation.


hand grip; error manifestation; defined level of force; visual feedback


Amanović, Đ., Milošević, M., Mudrić, R., Dopsaj, M., Perić, D. (2006) Modeling variability of the assigned level of force during isometric contractions of the arms extensor muscles in untrained males. Facta universitatis - series: Physical Education and Sport, vol. 4, br. 1, str. 35-48
Cole, K.J. (2008) Lifting a familiar object: visual size analysis, not memory for object weight, scales lift force. Experimental Brain Research, 188(4): 551-557
de Lacoste-Utamsing, C., Holloway, R.L. (1982) Sexual dimorphism in the human corpus callosum. Science, 216(4553): 1431-2
Desrosiers, J., Bravo, G., Hebert, R., Dutil, E. (1995) Normative Data for Grip Strength of Elderly Men and Women. American Journal of Occupational Therapy, 49(7): 637-644
Dopsaj, M., Blagojević, M., Marinković, B., Miljuš, D., Vučković, G., Koropanovski, N., Ivanović, J., Atanasov, D., Janković, R. (2010) Modelne karakteristike osnovnih antropometrijskih pokazatelja i bazično - motoričkih sposobnosti (BMS) zdravih i utreniranih mladih osoba oba pola populacioni pokazatelji R Srbije. Beograd: Kriminalističko-policijska akademija
Dopsaj, M., Ivanović, J., Blagojević, M., Koropanovski, N., Vučković, G., Janković, R., Marinković, B., Atanasov, D., Miljuš, D. (2009) Basic and specific characteristics of the hand grip explosive force and time parameters in different strenght trained population. Brazilian journal of biomotricity, 3(2): 177-193
Dopsaj, M., Ivanović, J., Blagojević, M., Vučković, G. (2009) Descriptive, functional and sexual dimorphism of explosive isometric hand grip force in healthy university students in Serbia. Facta universitatis - series: Physical Education and Sport, vol. 7, br. 2, str. 125-139
Dopsaj, M., Koropanovski, N., Vučković, G., Blagojević, M., Marinković, B., Miljuš, D. (2007) Maximal Isometric Hand Grip Force in Well-Trained University Students in Serbia: Descriptive, Functional and Sexual Dimorphic Model. Serbian journal of sports sciences, 1(1-4): 139-148
Dopsaj, M., Kljajić, D., Eminović, F., Koropanovski, N., Dimitrijević, R., Stojković, I. (2011) Modelni pokazatelji karakteristika mišićne sile kod mladih i zdravih osoba pri motoričkom zadatku - stisak šake - pilot istraživanje. Specijalna edukacija i rehabilitacija, vol. 10, br. 1, str. 15-36
Elliott, D., Heath, M., Binsted, G., Ricker, K.L., Roy, E.A., Chua, R. (1999) Goal-Directed Aiming: Correcting a Force-Specification Error With the Right and Left Hands. Journal of Motor Behavior, 31(4): 309-324
Fernandes, A.A., Natali, A.J., Vieira, B.C., do Valle, N.M.A.A., Moreira, D.G., Massy-Westropp, N., Marins, B. (2014) The relationship between hand grip strength and anthropometric parameters in men. Archivos de Medicina del Deporte, 31(3); 160-164
Fess, E.E. (1992) Grip strength. in: Casanova J.S. [ed.] Clinical Assessment Recommendations, Chicago, IL: American Society of Hand Therapists, 2nd ed, pp. 41-45
Foo, L.H., Zhang, Q., Zhu, K., Ma, G., Greenfield, H., Fraser, D.R. (2007) Influence of body composition, muscle strength, diet and physical activity on total body and forearm bone mass in Chinese adolescent girls. British journal of nutrition, 98(6): 1281-7
Galganski, M.E., Fuglevand, A.J., Enoka, R.M. (1993) Reduced control of motor output in a human hand muscle of elderly subjects during submaximal contractions. Journal of Neurophysiology, 69(6); 2108-2115
Gallup, A.C., White, D.D., Gallup, G.G. (2007) Handgrip strength predicts sexual behavior, body morphology, and aggression in male college students. Evolution and Human Behavior, 28(6): 423-429
Gallup, A.C., o'Brien Daniel, T., White, D.D., Wilson, D.S. (2010) Handgrip strength and socially dominant behavior in male adolescents. Evolutionary psychology, 8(2): 229-43
Goble, D.J., Lewis, C.A., Brown, S.H. (2005) Upper limb asymmetries in the utilization of proprioceptive feedback. Experimental Brain Research, 168(1-2): 307-311
Hager-Ros, C., Rosblad, B. (2002) Norms for grip strength in children aged years. Acta Paedriatrica, 91(6); 617-625; 4-16
Hallbeck, M.S., McMullin, D.L. (1993) Maximal power grasp and three-jaw chuck pinch force as a function of wrist position, age, and glove type. International Journal of Industrial Ergonomics, 11(3): 195-206
Hermsdörfer, J., Nowak, D.A. (2009) Disorders of the somatosensory system. in: D. A. Nowak & J. Hermsdörfer [ed.] Physiology and Pathophysiology, Cambridge University Press, : 269-284
Ivanović, J., Koropanovski, N., Vučković, G., Janković, R., Miljuš, D., Marinković, B., Atanasov, D., Blagojević, M., Dopsaj, M. (2009) Functional dimorphism and characteristics considering maximal hand grip force in top level athletes in the Republic of Serbia. Gazzetta medica italiana, 168(5): 297-310
Kattel, B.P., Fredericks, T.K., Fernandez, J.E., Lee, D.C. (1996) The effect of upper-extremity posture on maximum grip strength. International Journal of Industrial Ergonomics, 18(5-6): 423-429
Kerr, A. (2006) Does admission grip strength predict length of stay in hospitalised older patients?. Age and Ageing, 35(1): 82-84
King, P.M., Finet, M. (2004) Determining the accuracy of the psychophysical approach to grip force measurement. Journal of Hand Therapy, 17(4): 412-416
Klidjian, A.M., Foster, K.J., Kammerling, R.M., Cooper, A., Karran, S.J. (1980) Relation of anthropometric and dynamometric variables to serious postoperative complications. BMJ, 281(6245): 899-901
Kljajić, D., Eminović, F., Trgovčević, S., Dimitrijević, R., Dopsaj, M. (2012) Functional relationship between dominant and non-dominant hand in motor task - hand grip strength endurance. Specijalna edukacija i rehabilitacija, vol. 11, br. 1, str. 67-85
Leyk, D., Gorges, W., Ridder, D., Wunderlich, M., Ruther, T., Sievert, A., Essfeld, D. (2007) Hand-grip strength of young men, women and highly trained female athletes. European Journal of Applied Physiology, 99(4): 415
MacDougall, D., Wenger, H., Green, H. (1991) Physiological testing of the high-performance athlete. Champaign, IL: Human Kinetics
Massy-Westropp, N., Gill, T., Taylor, A., Bohannon, R., Hill, C. (2011) Hand grip strength: Age and gender stratified normative data in a population-based study. BMC Research Notes, 4: 127
Mathiowetz, V. (2002) Comparison of Rolyan and Jamar dynamometers for measuring grip strength. Occupational Therapy International, 9(3): 201-209
Mohammadian, M., Choobineh, A., Haghdoost, A., Hasheminejad, N. (2014) Normative data of grip and pinch strengths in healthy adults of Iranian population. Iranian Journal of Public Health, 43(8); 1113-1122
Muller, E., Benko, U., Raschner, C., Schwameder, H. (2000) Specific fitness training and testing in competitive sports. Medicine & Science in Sports & Exercise, 32(1), 216-220
Nicolay, C.W., Walker, A.L. (2005) Grip strength and endurance: Influences of anthropometric variation, hand dominance, and gender. International Journal of Industrial Ergonomics, (35): 605-618
Nowak, D.A. (2004) Different modes of grip force control: voluntary and externally guided arm movements with a hand-held load. Clinical Neurophysiology, 115(4): 839-848
Peters, M.J.H., van Nes, S.I., Vanhoutte, E.K., Bakkers, M., van Doorn, P.A., Merkies, I.S.J., Faber, C.G., group on behalf of the PeriNomS Study (2011) Revised normative values for grip strength with the Jamar dynamometer. Journal of the Peripheral Nervous System, 16(1): 47-50
Rantanen, T. (1999) Midlife Hand Grip Strength as a Predictor of Old Age Disability. JAMA, 281(6): 558
Roy, E.A., Kalbfleisch, L., Elliott, D. (1994) Kinematic Analyses of Manual Asymmetries in Visual Aiming Movements. Brain and Cognition, 24(2): 289-295
Sartorio, A., Lafortuna, C.L., Pogliaghi, S., Trecate, L. (2002) The impact of gender, body dimension and body composition on hand-grip strength in healthy children. Journal of Endocrinological Investigation, 25(5): 431-435
Slifkin, A.B., Vaillancourt, D.E., Newell, K.M. (2000) Intermittency in the control of continuous force production. Journal of Neurophysiology, 84(4); 1708-1718
Weinstock-Zlotnick, G., Bear-Lehman, J., Yu, T. (2011) A Test Case: Does the Availability of Visual Feedback Impact Grip Strength Scores When Using a Digital Dynamometer?. Journal of Hand Therapy, 24(3): 266-276
Windsor, J.A., Hill, G.L. (1988) Grip strength: A measure of the proportion of protein loss in surgical patients. British Journal of Surgery, 75(9): 880-882
World Medical Organization (1996) Declaration of Helsinki (1964). BMJ, 313(7070): 1448-1449