- citati u SCIndeksu: 0
- citati u CrossRef-u:0
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:5
- preuzimanja u poslednjih 30 dana:4
|
|
2014, vol. 40, br. 4, str. 247-254
|
Matematički model stabilnosti traktora za različite karakteristike traktora
Mathematical model of tractor stability depending on the techical characteristics of tractor
Projekat: Unapređenje kvaliteta traktora i mobilnih sistema u cilju povećanja konkurentnosti, očuvanja zemljišta i životne sredine (MPNTR - 31046) Modeliranje stanja i strukture padinskih procesa primenom GNSS i tehnologija skeniranja laserom i georadarom (MPNTR - 37017)
Sažetak
U radu je predstavljen matematički model koji nam daje granice stabilnosti traktora. Cilj je da se odredi do koje dubine se sme vršiti rigolovanje ili oranje uz variranje onih karakteristika traktora koje direktno utiču na stabilnost. Te karakteristike su razmak između vertikalnih simetrala zadnjih točkova (B), vertikalna udaljenost težišta T od ravni oslonca točkova (d), za razne vrste nagnutosti terena, a da ne dođe do bočnog prevrtanja traktora. Odstupanje težišta po x-osi od simetrale ravni traktora, ekscentritet (e) uglavnom ne utiče na bočno prevrtanje. Ipak u situacijama kada ima uticaja, to je evidentirano. U modelu se od matematičkog aparata koriste vektori, matrični račun i transformacije podudarnosti kojima se brže i jednostavnije dolazi do modela.
Abstract
This paper presents a mathematical model that gives us the stability limit of the tractor. The objective was to determine to what depth must be performed trenching or plowing with varying characteristics of the tractor which directly affect the stability. These characteristics are the distance between the vertical centerline of the rear wheels (B), the vertical center of gravity of the T level of support wheels (d), for various types of inclination of the field, and to avoid side overturn of the tractor. Deviation of gravity along the x-axis perpendicular bisector plane of the tractor, the eccentricity (e) generally does not affect the lateral tractor overturning. However, in situations where there is interference, it is recorded. In the model of mathematical apparatus used vectors, matrices and transformations which is faster and easier to come up with models.
|
|
|
Reference
|
1
|
Abubakar, M.S., Ahmad, D., Akande, F.B. (2010) A review of farm tractor overturning accident and safety. Pertanika Journal Science and Technology, 18(2): 377-385
|
1
|
Abu-Hamdeh, N.H., Al-Jalil, H.F. (2004) Computer simulation of stability and control of tractor-trailed implement combinations under different operating conditions. Bragantia, 63(1): 149-162
|
2
|
Ahmadi, I. (2011) Dynamics of tractor lateral overturn on slopes under the influence of position disturbances (model development). Journal of Terramechanics, 48(5): 339-346
|
1
|
Blagojević, B., Matić-Kekić, M., Ružić, D., Dedović, D. (2012) Primena metoda SAW, TOPSIS i CP u rangiranju traktora na bazi ergonomskih karakteristika. Savremena poljoprivredna tehnika, vol. 38, br. 4, str. 327-337
|
3
|
Blagojević, B., Matić-Kekić, S. (2012) Grupno određivanje težina kriterijuma za evaluaciju ergonomskih karakteristika traktora. Savremena poljoprivredna tehnika, vol. 38, br. 3, str. 255-266
|
7
|
Dedović, N., Igić, S., Janić, T., Brkić, M. (2008) Uticaj recirkulacije vazduha na energetsku efikasnost kotla za sagorevanje balirane biomase 120 kW i prikaz matematičkih modela. Savremena poljoprivredna tehnika, vol. 34, br. 3-4, str. 221-227
|
3
|
Dedović, N., Igić, S., Matić-Kekić, S., Janić, T. (2010) Koeficijent viška vazduha pri sagorevanju bala slame i prikaz matematičkih modela. Savremena poljoprivredna tehnika, vol. 36, br. 4, str. 344-356
|
1
|
Dedović, N., Matić-Kekić, S., Ponjičan, O., Karadžić, B. (2011) New approach to border line evaluations for whole sample of Williams pear (Pyrus communis). Computers and Electronics in Agriculture, 79(1): 94-101
|
4
|
Dedović, N., Matić-Kekić, S., Janić, T., Igić, S. (2011) Određivanje matematičkih modela pri recirkulaciji produkata sagorevanja bala pšenične slame. Savremena poljoprivredna tehnika, vol. 37, br. 1, str. 91-104
|
1
|
Goldenhar, L.M., Schulte, P.A. (1996) Methodological issues for intervention research in occupational health and safety. American Journal of Industrial Medicine, 29(4): 289-294
|
2
|
Kostić, M., Kekić-Matić, S., Dedović, N., Malinović, N., Meši, M., Savin, L. (2012) Pojednostavljeni regresioni model neravnomernog opterećenja točkova traktora na bočnom nagibu i njegova primena. Savremena poljoprivredna tehnika, vol. 38, br. 2, str. 153-163
|
4
|
Matić-Kekić, S. (2008) Određivanje zapremine krošnji piramidalnog, kupastog, elipsoidnog i sfernog oblika u prirodi. Letopis naučnih radova Poljoprivrednog fakulteta, vol. 32, br. 1, str. 27-34
|
3
|
Matić-Kekić, S., Dedović, N., Savin, L., Simikić, M. (2011) Primena nelinearne regresione analize. Savremena poljoprivredna tehnika, vol. 37, br. 4, str. 419-425
|
3
|
Matić-Kekić, S., Dedović, N., Trivunović, S. (2011) Rekurzivna formula za broj krava u okviru proizvodnje mleka. Savremena poljoprivreda, vol. 60, br. 1-2, str. 7-14
|
|
Matić-Kekić, S., Kostić, M., Dedović, N. (2014) Matematički model stabilnosti traktora u zavisnosti od tipa traktora, nagiba terena i dubine brazde. Savremena poljoprivredna tehnika, vol. 40, br. 1, str. 37-44
|
1
|
National Safety Council (2001) Accident facts. Chicago
|
1
|
Purschwitz, M.A. (1992) Farm and agricultural injury statistics. u: [ur.] Saf Health Prod Agric, St. Joseph, MI, Chapter 3, p. 253
|
1
|
Wismer, R.D. (1991) Science, engineering and soil measurement. Journal of Terramechanics, 28(2-3): 89-92
|
3
|
Wolfram, S. (2011) Mathematica: Virtual book. Available from: http://reference. wolfram.com/mathematica/tutorial/VirtualBook/Overview.html
|
|
|
|