Article metrics

  • citations in SCindeks: [1]
  • citations in CrossRef:[2]
  • citations in Google Scholar:[=>]
  • visits in previous 30 days:7
  • full-text downloads in 30 days:3
article: 1 from 2  
Back back to result list
Zaštita materijala
2016, vol. 57, iss. 2, pp. 205-211
article language: English
document type: Review Paper
published on: 25/06/2016
doi: 10.5937/ZasMat1602205J
Chemical corrosion of metals and alloys
University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM

e-mail: borejegdic@yahoo.com

Project

Synthesis, processing and applications of nanostructured multifunctional materials with defined properties (MESTD - 45019)
Development of the tribological micro/nano two component and hybrid selflubricating composites (MESTD - 35021)

Abstract

In this paper, phenomena of chemical corrosion of metals and alloys in electrolyte solutions are analyzed. It is shown that iron, chromium and other metals and alloys dissolve much faster than is the corrosion rate determined by electrochemical methods. This means that the chemical dissolution takes place simultaneously with the electrochemical dissolution. The chemical dissolution does not depend on electrode potential. Under some conditions, chemical dissolution of metals is the dominant process of dissolution. Several mechanisms of chemical corrosion are described. Also, the consequences of chemical dissolution of various metals and alloys are discussed, as well as the hydrogen evolution during the chemical dissolution. The process of hydrogen evolution during the chemical corrosion is not subjected to the laws of electrochemical kinetics.

Keywords

References

Bockris, J.O.M., Dražić, D.M., Despić, A.R. (1961) Electrode kinetics of the deposition and dissolution of iron. Electrochimica Acta, 4(2-4): 325
Conway, B.E., Bockris, J.O`M. (1961) On the calculation of potential energy profile diagrams for processes in electrolytic metal deposition. Electrochimica Acta, 3(4): 340-366
Dražić, D.M. (1996) Belgrade: Department of Technical Sciences, book 2
Dražić, D.M., Popić, J.P. (2003) Belgrade: Department of Technical Sciences, book 34
Dražić, D.M., Zečević, S.K. (1978) On the Mechanism of Zinc Dissolution in Acid Solutions,. Bull. Serb. Chem. Soc. Beograd, 43 (4); 141-147
Dražić, D.M., Popić, J.P. (2005) Anomalous dissolution of metals and chemical corrosion. Journal of the Serbian Chemical Society, vol. 70, br. 3, str. 489-511
Dražić, D.M., Popić, J.P. (2000) Chemical dissolution of iron in aqueous solutions. Russian journal of electrochemistry, vol. 36, br. 10, str. 1043-1050
Dražić, D.M., Popić, J.P. (2002) Dissolution of chromium in sulfuric acid. Journal of the Serbian Chemical Society, vol. 67, br. 11, str. 777-782
Dražić, D.M., Popić, J.P. (2004) Electrochemistry of active chromium: Part 1 - Anomalous corrosion and products of chromium dissolution in deaerated sulfuric acid. Corrosion, vol. 60, br. 3, str. 297-303
Dražić, D.M., Popić, J.P., Jegdić, B., Vasiljević-Radović, D. (2004) Electrochemistry of active chromium, part IV: Dissolution of chromium in deaerated sulfuric acid. Journal of the Serbian Chemical Society, vol. 69, br. 12, str. 1099-1110
Dražić, D.M., Jegdić, B., Popić, J.P. (2005) Uticaj strukture metalnog hroma na njegovu elektrohemijsku i hemijsku koroziju. Zaštita materijala, vol. 46, br. 2, str. 29-34
Dražić, D.M., Popić, J.P. (1999) Corrosion rates and negative difference effects for Al and some Al alloys. Journal of applied electrochemistry, 29(1): 43-50
Hadži-Jordanov, S.A., Dražić, D.M. (1973) The Kinetics and Mechanism of Electrochemical Deposition of Zinc in Acid Sulfate Solutions. Bull. Serb. Chem. Soc. Beograd, 38 (9-10); 529-544
Heumann, Th., Diekötter, F.W. (1963) Untersuchungen über das elektrochemische Verhalten des Chroms in schwefelsauren Lösungen im Hinblick auf die Passivität. Berichte der Bunsengesellschaft für physikalische Chemie, 67(7): 671-680
Jegdic, B., Drazic, D.M., Popic, J.P. (2008) Open circuit potentials of metallic chromium and austenitic 304 stainless steel in aqueous sulphuric acid solution and the influence of chloride ions on them. Corrosion Science, vol. 50, br. 5, str. 1235-1244
Jegdić, B., Dražić, D.M., Popić, J.P. (2006) Korozioni potencijal nerđajućeg čelika 304 u sumpornoj kiselini. Journal of the Serbian Chemical Society, vol. 71, br. 5, str. 543-551
Jegdić, B., Bobić, B., Jegdić, A., Stevanović, M. (2015) Mechanisms of hydrogen evolution on chromium. Mining and Metallurgy Engineering Bor, br. 3, str. 145-156
Jegdić, B., Dražić, D.M., Popić, J.P. (2006) Uticaj hloridnih jona na potencijal otvorenog kola hroma u deaerisanim rastvorima sumporne kiseline. Journal of the Serbian Chemical Society, vol. 71, br. 11, str. 1187-1194
Jegdić, B., Dražić, D.M., Popić, J.P., Radmilović, V. (2007) Uticaj strukture metalnog hroma na njegovo elektrohemijsko ponašanje. Journal of the Serbian Chemical Society, vol. 72, br. 6, str. 563-578
Jones, R.H. (1998) Stress corrosion cracking. in: ASM Handbook, Corrosion, Ohio: Materials Information Society, vol. 13, 145-163
Keasche, H. (1984) Die Korrosion der Metalle. Moskva: Metalurgiya, Russian translation
Knyazheva, V.M., Kolotyrkin, Y.M., Kruzhkovskaya, A.A. (1970) O mekhanizme rastvoreniya khromo-nikel-margancevih stalej v sernoj kislote. Zashch. Metal, 6 (3); 265-273
Kolotyrkin, Y.M., Florianovich, G.M. (1984) Anomalnoe rastvorenie metallov. Eksperimentalnie fakti i ih teoreticheskoe tolkovanie. Zashch. Metal, 20 (1); 14-24
Kolotyrkin, Y.M., Agladze, T.R. (1967) Osobenosti rastvoreniya marganca v kislih elektrolitakh. Zashch. Metal, 3 (4); 413-418
Mansfeld, F. (1976) in: Fontana M. G., Staehle R. W. [ed.] Advance in Corrosion Science and Technology, New York-London: Plenum Press, Vol. 6
March, G.A., Schaschl, E. (1960) The Difference Effect and the Chunk Effect. J Electrochem Soc, 107, 960
Mattson, E., Bockris, O`M.J. (1959) Galvanostatic studies of the kinetics of deposition and dissolution in the copper + copper sulphate system. Transactions of the Faraday Society, 55(5): 1586
Popić, J.P., Jegdić, B. (2008) Korozija visokohromnog belog gvožđa u kiseloj sredini. Zaštita materijala, vol. 49, br. 2, str. 15-23
Popić, J.P., Dražić, D.M. (2003) Electrochemistry of active chromium, part III: Effects of temperature. Journal of the Serbian Chemical Society, vol. 68, br. 11, str. 871-882
Popić, J.P., Dražić, D.M. (2004) Electrochemistry of active chromium - Part II. Three hydrogen evolution reactions on chromium in sulfuric acid. Electrochimica Acta, vol. 49, br. 27, str. 4877-4891
Prazák, M. (1974) The Polarization Resistance Method for Corrosion Testing. Materials and Corrosion/Werkstoffe und Korrosion, 25(2): 104-112
Stern, M., Geavy, A.L. (1957) Electrochemical polarization, I: A theoretical analysis of the shape of polarization curves. Journal of the Electrochemical Society, 104, 56-63
Straumanis, M.E. (1961) Valency of Ions Formed during Anodic Dissolution of Metals in Acids. Journal of The Electrochemical Society, 108(12): 1087
Sukhotin, A.M., Khoreva, N.K. (1982) Passivnost khroma. Osobenosti katodnogo aktivirovaniya khroma. Electrokhimiya, 18 (1); 132-134
Tomashov, N.D. (1959) Teoriya korozii i zashchiti matallov. Moskva-Leningrad: Akademija nauk SSSR
Vorkapić, L.ſ., Dražić, D.M. (1979) The dissolution of iron under cathodic polarization. Corrosion Science, 19(9): 643-651
Wilde, B.E., Hodge, F.G. (1969) The cathodic discharge of hydrogen on active and passive chromium surfaces in dilute sulphuric acid solutions1. Electrochimica Acta, 14 (7): 619