Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:16
  • preuzimanja u poslednjih 30 dana:8
članak: 1 od 5  
Back povratak na rezultate
Zaštita materijala
2018, vol. 59, br. 2, str. 256-264
jezik rada: engleski
vrsta rada: naučni članak
doi:10.5937/ZasMat1802256N

Creative Commons License 4.0
Korelacija izmedju orijentacije kristala i morfologije elektrolitički proizvedenih praškastih čestica - analiza graničnih slučajeva
aUniverzitet u Beogradu, Institut za hemiju, tehnologiju i metalurgiju - IHTM, Beograd
bUniverzitet u Beogradu, Institut za nuklearne nauke Vinča
cUniverzitet u Beogradu, Centar za multidisciplinarne studije, Beograd
dUniverzitet u Beogradu, Tehnološko-metalurški fakultet

e-adresa: nnikolic@tmf.bg.ac.rs

Projekat

Elektrohemijska sinteza i karakterizacija nanostrukturiranih funkcionalnih materijala za primenu u novim tehnologijama (MPNTR - 172046)

Sažetak

Čestice praha olova i nikla proizvedene su procesima elektrolize i okarakterisane skenirajućim elektronskim mikroskopom. Urađena je i rendgeno-strukturna analiza dobijenih čestica. Morfologije čestica olova i nikla su korelisane sa njihovom kristalnom strukturom na polukvantitativnom nivou određivanjem 'Teksturnog koeficijenta' (TC) i 'Relativnog teksturnog koeficijenta' (RTC). Dvodimen- zionalne (2D) dendritične čestice olova različitog stepena razgranatosti dobijene su potenciostatskim režimom elektrolize iz nitratnog, acetatnog i hidroksilnog elektrolita. Čestice nikla sunđerastog oblika u čijoj strukturi se uočavaju rupe formirane odvajanjem mehurova vodonika okružene karfiolastim aglomeratima približno sferičnih zrna (struktura pčelinjeg saća) dobijene su galvanostatskim režimom elektrolize iz hloridnog elektrolita. Premda su kristaliti dominantno orijentisani u (111) ravni i u česticama praha olova i nikla, analiza rendgenograma je pokazala njihove različite dominantne orijentacije. Svi tipovi olovnih dendritičnih čestica su pokazali strogu (111) dominantnu orijentaciju, dok kristaliti nikla u sunđerastim česticama su bili skoro slučajno orijentisani. Dobijeni rezultati su diskuto- vani sledeći Vinjadovu klasifikaciju metala na normalne, intermedijalne i inertne, zasnovane na njihovim vrednostima gustine struje izmene, tačke topljenja i prenapetosti za reakciju izdvajanja vodonika.

Ključne reči

Reference

Amiri, M., Nouhi, S., Azizian-Kalandaragh, Y. (2015) Facile synthesis of silver nanostructures by using various deposition potential and time: A nonenzymetic sensor for hydrogen peroxide. Materials Chemistry and Physics, 155: 129-135
Avramović, Lj., Ivanović, E.R., Maksimović, V.M., Pavlović, M.M., Vuković, M., Stevanović, J.S., Nikolić, N.D. (2018) Correlation between crystal structure and morphology of potentiostatically electrodeposited silver dendritic nanostructures. China: Trans Nonferrous Met. Soc
Avramović, L., Pavlović, M., Maksimović, V., Vuković, M., Stevanović, J., Bugarin, M., Nikolić, N. (2017) Comparative Morphological and Crystallographic Analysis of Electrochemically- and Chemically-Produced Silver Powder Particles. Metals, 7(5): 160
Banik, S.J., Akolkar, R. (2015) Suppressing Dendritic Growth during Alkaline Zinc Electrodeposition using Polyethylenimine Additive. Electrochimica Acta, 179: 475-481
Bérubé, L. Ph. (1989) A Quantitative Method of Determining the Degree of Texture of Zinc Electrodeposits. Journal of The Electrochemical Society, 136(8): 2314
Bockris, J.O’M., Reddy, A.K.N., Gamboa-Aldeco, M. (2000) Modern electrochemistry 2A: Fundamentals of electrodics. New York, USA: Kluwer Academic/Plenum Publishers, p. 1333
Diggle, J.W., Despic, A.R., Bockris, J. OM. (1969) The Mechanism of the Dendritic Electrocrystallization of Zinc. Journal of The Electrochemical Society, 116(11): 1503
Jović, V.D., Maksimović, V., Pavlović, M.G., Popov, K.I. (2006) Morphology, internal structure and growth mechanism of electrodeposited Ni and Co powders. Journal of Solid State Electrochemistry, 10(6): 373-379
Jović, V.D., Jović, B.M., Pavlović, M.G. (2006) Electrodeposition of Ni, Co and Ni-Co alloy powders. Electrochimica Acta, 51(25): 5468-5477
Jović, V.D., Jović, B.M., Maksimović, V.M., Pavlović, M.G. (2007) Electrodeposition and morphology of Ni, Co and Ni-Co alloy powders - Part II. Ammonium chloride supporting electrolyte. Electrochimica acta, vol. 52, br. 12, str. 4254-4263
Mandke, M.V., Han, S., Pathan, H.M. (2012) Growth of silver dendritic nanostructuresvia electrochemical route. CrystEngComm, 14(1): 86-89
Nekouei, R.K., Rashchi, F., Amadeh, A.A. (2013) Using design of experiments in synthesis of ultra-fine copper particles by electrolysis. Powder Technology, 237: 165-171
Nekouie, R.K., Rashchi, F., Joda, N.N. (2013) Effect of organic additives on synthesis of copper nano powders by pulsing electrolysis. Powder Technology, 237: 554-561
Nevers, A., Hallez, L., Touyeras, F., Hihn, J. (2018) Effect of ultrasound on silver electrodeposition: Crystalline structure modification. Ultrasonics Sonochemistry, 40: 60-71
Nikolić, N.D., Pavlović, Lj.J., Pavlović, M.G., Popov, K.I. (2008) Morphologies of electrochemically formed copper powder particles and their dependence on the quantity of evolved hydrogen. Powder Technology, 185(3): 195-201
Nikolić, N.D., Branković, G., Pavlović, M.G. (2012) Correlate between morphology of powder particles obtained by the different regimes of electrolysis and the quantity of evolved hydrogen. Powder Technology, 221: 271-277
Nikolić, N.D., Maksimović, V.M., Branković, G., Živković, P.M., Pavlović, M.G. (2013) Uticaj tipa elektrolita na morfološke i kristalografske karakteristike praškastih čestica olova # Influence of the type of electrolyte on the morphological and crystallographic characteristics of lead powder particles. Journal of the Serbian Chemical Society, vol. 78, br. 9, str. 1387-1395
Nikolić, N.D., Popov, K.I., Pavlović, L.J., Pavlović, M.G. (2006) The effect of hydrogen codeposition on the morphology of copper electrodeposits. 1. The concept of effective overpotential. Journal of electroanalytical chemistry, vol. 588, br. 1, str. 88-98
Nikolić, N.D., Vaštag, D.Dj., Živković, P.M., Jokić, B., Branković, G. (2013) Influence of the complex formation on the morphology of lead powder particles produced by the electrodeposition processes. Advanced Powder Technology, 24(3): 674-682
Nikolić, N.D., Vaštag, D.Dj., Maksimović, V.M., Branković, G. (2014) Morphological and crystallographic characteristics of lead powder obtained by electrodeposition from an environmentally friendly electrolyte. Transactions of Nonferrous Metals Society of China, 24(3): 884-892
Nikolić, N.D., Popov, K.I. (2014) A New Approach to the Understanding of the Mechanism of Lead Electrodeposition. u: Djokić, Stojan S. [ur.] Electrodeposition and Surface Finishing, Series: Modern Aspects of Electrochemistry, New York, NY: Springer Nature, str. 85-132
Nikolić, N.D., Stevanović, S.I., Pavlović, M.G., Branković, G. (2016) Fundamental aspects of lead electrodeposition processes: Nucleation and growth. Zaštita materijala, vol. 57, br. 1, str. 119-127
Nikolić, N.D., Maksimović, V.M., Branković, G. (2013) Morphological and crystallographic characteristics of electrodeposited lead from a concentrated electrolyte. RSC Advances, 3(20): 7466
Orhan, G., Hapci, G. (2010) Effect of electrolysis parameters on the morphologies of copper powder obtained in a rotating cylinder electrode cell. Powder Technology, 201(1): 57-63
Pavlović, M.G., Popov, K.I. (2005) Metal powder production by electrolysis. u: Electrochemistry Encyclopedia, electrochem.cwru.edu./ed/encycl/artp04
Popov, K.I., Djokić, S.S., Nikolić, N.D., Jović, V.D. (2016) Morphology of Electrochemically and Chemically Deposited Metals. New York: Springer, 1-368
Popov, K.I., Krstajić, N.V., Čekerevac, M.I. (1996) The mechanism of formation of coarse and disperse electrodeposits. u: White R.E., Conway B.E., Bockris J.O'M. [ur.] Modern Aspects of Electrochemistry, New York: Plenum Press, Series, p.p. 261-312
Popov, K.I., Nikolić, N.D. (2012) General Theory of Disperse Metal Electrodeposits Formation. u: Djokić, Stojan S. [ur.] Electrochemical Production of Metal Powders, Series: Modern Aspects of Electrochemistry, Boston, MA: Springer Nature, str. 1-62
Popov, K.I., Živković, P.M., Nikolić, N.D. (2016) Electrochemical aspects of formation of dendrites. Zaštita materijala, vol. 57, br. 1, str. 55-62
Popov, K.I., Pavlović, L.J., Ivanović, E.R., Radmilović, V.R., Pavlović, M.G. (2002) Uticaj reversne struje na nasipnu masu pri elektrolitičkom taloženju bakarnog praha # The effect of reversing current deposition on the apparent density of electrolytic copper powder. Journal of the Serbian Chemical Society, vol. 67, br. 1, str. 61-67
Sivasubramanian, R., Sangaranarayanan, M.V. (2013) Electrodeposition of silver nanostructures: from polygons to dendrites. CrystEngComm, 15(11): 2052
Sivasubramanian, R., Sangaranarayanan, M.V. (2015) A facile formation of silver dendrites on indium tin oxide surfaces using electrodeposition and amperometric sensing of hydrazine. Sensors and Actuators B: Chemical, 213: 92-101
Winand, R. (1994) Electrodeposition of metals and alloys: New results and perspectives. Electrochimica Acta, 39(8-9): 1091-1105
Wranglen, G. (1960) Dendrites and growth layers in the electrocrystallization of metals. Electrochimica Acta, 2, 130
Xia, Y., Xiong, Y., Lim, B., Skrabalak, Sara E. (2008) Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics?. Angewandte Chemie International Edition, 48(1): 60-103