Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:8
  • preuzimanja u poslednjih 30 dana:2

Sadržaj

članak: 1 od 2  
Back povratak na rezultate
Ispitivanje kinetike termalne degradacije nanokompozita na bazi nylon6/GF/crysnano nanogline pomoću TGA
aDepartment of Studies in Chemistry, University of Mysore, Mysore, India + Department of Polymer Science and Technology, Sri Jayachamarajendra College of Engineering, Mysore, India
bDepartment of Polymer Science and Technology, Sri Jayachamarajendra College of Engineering, Mysore, India
cDepartment of Studies in Chemistry, University of Mysore, Mysore, India

e-adresaakheelahmed54@rediffmail.com
Ključne reči: nylon 6; crysnano nanogline; kompoziti; TGA; termička razgradnja; kinetički parametri
Sažetak
Nylon 6 ima široku primenu u inženjerstvu zbog svojih specifičnih karakteristika kao što su: niska cena koštanja, mala viskoznost, velika čvrstoća, lubrifikacione osobine i visoka hemijska otpornost. Nanokompoziti su pripremljeni ekstruzijom otopljenog polimera i brizganjem. Proučavane su mehaničke i termomehaničke karakteristike ispitivanjem čvrstoće i dinamičkom mehaničkom analizom. Kako bi se ispitala mogućnost primene nanogline Crysnano kao nanopunioca, karakteristike nanokompozita na bazi ove nanogline su poređene sa staklenim vlaknima. Termalne karakteristike su ispitane pomoću termogravimetrijske analize (TGA), diferencijalne scanning kalorimetrije (DSC) i dinamičke mehaničke analize (DMA). Rezultati dobijeni pomoću DSC krive pokazuju da se sa povećanjem punioca entalpija topljenja (ΔHm) smanjuje u poređenju sa nekadašnjim naylon 6. Svi nanokompoziti su stabilni do 205°C. Kinetički parametri degradacije su određeni pomoću procesa termičke degradacije kompozita, korišćenjem matematičkih modela Horowitz-Metzgera, Coats-Redferna i Broidoa.
Reference
Agarwal, D., Broutman, L.J. (1990) Analysis and Performance of Fiber Reinforced Composites. New York: John Wiley, 2nd ed
Akkapeddi, M.K. (2000) Glass fiber reinforced polyamide-6 nanocomposites. Polymer Composites, 21(4): 576-585
Boscolo, B.A., Trezza, G., Andreis, B., Milan, L., Tavan, M., Furlan, P. (1992) Anionic polyamides modified with poly(oxypropylene) by 'one-shot' RIM technology: structural and morphological characterization. Macromolecules, 25(21): 5752-5758
Broido, A.J. (1969) J Polym Sci Part A, Part A-2 7 1761
Buryachenko, V.A., Kushch, V.I., Roy, A. (2007) Acta Mechanica, 192(1-4): 135-167
Coats, A.W., Redfern, J.P. (1964) Nature, 201, 68
Horowitz, H.H., Metzger, G. (1964) Analytical Chemistry, 35, 6
Jo, C., Naguib, H.E. (2007) Processing, Characterization, and Modeling of Polymer/Clay Nanocomposite Foams. Journal of Physics: Conference Series, 61(): 861-868
Ke, Y., Long, C., Qi, Z. (1999) Crystallization, properties, and crystal and nanoscale morphology of PET-clay nanocomposites. Journal of Applied Polymer Science, 71(7): 1139-1146
Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., Kamigaito, O. (1993) Mechanical properties of nylon 6-clay hybrid. Journal of Materials Research, 8(05): 1185-1189
Kumar, H., Kumar, A., Siddaramaiah (2006) Physico-mechanical, thermal and morphological behaviour of polyurethane/poly(methyl methacrylate) semi-interpenetrating polymer networks. Polymer Degradation and Stability, 91(5): 1097-1104
Lai, M., Kim, J. (2005) Effects of epoxy treatment of organoclay on structure, thermo-mechanical and transport properties of poly(ethylene terephthalate-co-ethylene naphthalate)/organoclay nanocomposites. Polymer, 46(13): 4722-4734
Marissen, R., Brouwer, H.R. (1999) The significance of fibre microbuckling for the flexural strength of a composite. Composites Science and Technology, 59(3): 327-330
Miri, V., Elkoun, S., Peurton, F., Vanmansart, C., Lefebvre, J.-M., Krawczak, P., Seguela, R. (2008) Crystallization Kinetics and Crystal Structure of Nylon6-Clay Nanocomposites: Combined Effects of Thermomechanical History, Clay Content, and Cooling Conditions. Macromolecules, 41(23): 9234-9244
Rhutesh, S.K., Paul, D.R. (2004) Masterbatch process Polym, 45(9) 2991-3000
Schadler, L., Brinson, L., Sawyer, W. (2007) Chem. Mater. Sci, 59, str. 53-60
Schmidt, D.F., Giannelis, E.P. (2010) Silicate Dispersion and Mechanical Reinforcement in Polysiloxane/Layered Silicate Nanocomposites. Chemistry of Materials, 22(1): 167-174
Siddaramaiah, P.S., Syed, A.A. (2010) J. Macromolecular Part A Chem, 47, str. 777-783
Sinharay, S., Bousmina, M. (2005) Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Progress in Materials Science, 50(8): 962-1079
Stein, R.S. (1992) Polymer Recycling: Opportunities and Limitations. Proceedings of the National Academy of Sciences, 89(3): 835-838
Syed, M.A., Akhtar, S., Siddaramaiah,, Syed, A.A. (2011) Studies on the physico-mechanical, thermal, and morphological behaviors of high density polyethylene/coleus spent green composites. Journal of Applied Polymer Science, 119(4): 1889-1895
Wang, Z.M., Nakajima, H., Manias, E., Chung, T.C. (2003) Exfoliated PP/Clay Nanocomposites Using Ammonium-Terminated PP as the Organic Modification for Montmorillonite. Macromolecules, 36(24): 8919-8922
 

O članku

jezik rada: engleski
vrsta rada: naučni članak
DOI: 10.2298/CICEQ101007064P
objavljen u SCIndeksu: 07.09.2011.