Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:3
  • preuzimanja u poslednjih 30 dana:0
članak: 2 od 3  
Back povratak na rezultate
Facta universitatis - series: Mechanical Engineering
2013, vol. 11, br. 1, str. 29-44
jezik rada: engleski
vrsta rada: neklasifikovan
objavljeno: 02/12/2013
Poređenje meta-heurističkih algoritama za rešavanje problema optimizacije parametra obrade
Univerzitet u Nišu, Mašinski fakultet

e-adresa: madic@masfak.ni.ac.rs

Projekat

Istraživanje primene savremenih nekonvencionalnih tehnologija u proizvodnim preduzećima sa ciljem povećanja efikasnosti korišćenja, kvaliteta proizvoda, smanjenja troškova i uštede energije i materijala (MPNTR - 35034)

Sažetak

Optimizacija parametara obrade ne utiče samo da efikasnost i ekonomičnost obrade već i na finalni kvalitet proizvoda, pa samim tim ova tema je još uvek predmet izučavanja mnogih studija. Izbor optimalnih parametara obrade često se obavlja u dve faze, odnosno matematičkim modeliranjem performansi obrade i optimizacijom pomoću optimizacionih metoda. Njihova mogućnost da rešavaju složene i višedimenzionalne optimizacione probleme učinila je da postanu veoma popularan izbor od strane većine istraživača. U ovom radu, autori su uporedili rezultate optimizacije različitih meta-heurističkih algoritama koji su primenjeni na rešavanje optimizacionih problema obrade. Razmatrana su četiri meta-heuristička algoritma i to: realno kodirani genetski algoritam, simulirano kaljenje, poboljšani algoritam harmonijskog pretraživanja i algoritam kukavice. Pomoću ovih meta- heurističkih algoritama su tražene optimalne kombinacije različitih parametra obrade za pet studija slučaja uzetih iz literature. Rezultati optimizacije, dobijeni pomoću prethodno navedenih pet meta- heuristička algoritma za parametarsku optimizaciju procesa obrade, su upoređeni sa rezultatima poslednjih istraživanja.

Ključne reči

mašinska obrada; optimizacija; meta-heuristički algoritmi

Reference

Al-Harkan, I.M., Trafalis, T.B. (2002) A hybrid scatter genetic tabu approach for continuous global optimization. u: Pardalos P.M., A. Migdalas, R. Burkard [ur.] Combinatorial and Global Optimization, World Scientific Publishing Co
Blum, C., Roli, A. (2003) Metaheuristics in combinatorial optimization. ACM Computing Surveys, 35(3): 268-308
Ciurana, J., Arias, G., Ozel, T. (2009) Neural Network Modeling and Particle Swarm Optimization (PSO) of Process Parameters in Pulsed Laser Micromachining of Hardened AISI H13 Steel. Materials and Manufacturing Processes, 24(3): 358-368
de Freitas, G.F.G., Maia, B.C.L., de Campos, L.G.A., de Souza, T.J. (2010) Optimization in Software Testing Using Metaheuristics. Revista de Sistemas de Informaçâo da FSMA, (5): 3-13
Geem, Z.W., Kim, J.H., Loganathan, G.V. (2001) A New Heuristic Optimization Algorithm: Harmony Search. Simulation, 76(2): 60-68
Gendreau, M., Potvin, J. (2005) Metaheuristics in Combinatorial Optimization. Annals of Operations Research, 140(1): 189-213
Gholizadeh, S., Barati, H. (2012) Comprative study of three metaheuristics for optimum design of trusses. International Journal of Optimization in Civil Engineering, (3): 423-441
Glover, F. (1986) Future paths for integer programming and links to artificial intelligence. Computers & Operations Research, 13(5): 533-549
Holland, J.H. (1975) Adaptation in natural and artificial Systems: an Introductory Analysis with Applications to Biology, Control, and ArtificialIntelligence. Ann Arbor: The University of Michigan Press
Khajehzadeh, M., Taha, R.M., El-Shafie, A., Eslami, M. (2011) A Survey on Meta-Heuristic Global Optimization Algorithms. Research Journal of Applied Sciences, Engineering and Technology, 3(6): 569-578
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P. (1983) Optimization by Simulated Annealing. Science, 220(4598): 671-680
Madić, M., Marković, D., Radovanović, M. (2012) Optimization of surface roughness when turning polyamide using ANN-IHSA approach. International Journal of Engineering & Technology, 1(4): 432-443
Madić, M., Radovanović, M. (2010) Savremene metode optimizacije obradnih procesa. IMK-14 - Istraživanje i razvoj, vol. 16, br. 4, str. 19-24
Mahdavi, M., Fesanghary, M., Damangir, E. (2007) An improved harmony search algorithm for solving optimization problems. Applied Mathematics and Computation, 188(2): 1567-1579
Manda, K., Satapathy, S.C., Poornasatyanarayana, B. (2012) Population based meta-heuristic techniques for solving optimization problems: A selective survey. International Journal of Emerging Technology and Advanced Engineering, 2(11): 206-211
Marinković, V., Madić, M. (2011) Optimization of surface roughness in turning alloy steel by using Taguchi method. Scientific research and Essay, 6 (16), str. 3474-3484
Marković, D. (2012) Assessing the performance of improved harmony search algorithm (IHSA) for the optimization of unconstrained functions using Taguchi experimental design. Scientific Research and Essays, 7(12), pp. 1312-1318
Mohruni, A.S. (2008) Performance evaluation of uncoated and coated carbide tools when end milling of titanium alloy using response surface methodology. Skudai Johor, Malaysia: Universiti Teknologi Malaysia, Thesis for Doctor of Philosophy
Mukherjee, I., Ray, P.K. (2006) A review of optimization techniques in metal cutting processes. Computers & Industrial Engineering, 50(1-2): 15-34
Pansare, V.B., Kavade, M.V. (2012) Optimization of cutting parameters in multipass turning operation using ant colony algorithm. International Journal of Engineering Science & Advanced Technology, 2(4): 955-960
Pare, V., Agnihotri, G., Krishna, C.M. (2011) Optimization of Cutting Sonditions in End Milling Process with the Approach of Particle Swarm Optimization. International Journal of Mechanical and Industrial Engineering, 1(2): 21-25
Rao, S.S. (1996) Engineering Optimization. John Wiley and Sons
Rao, V.R., Pawar, P.J., Davim, P.J. (2010) Optimisation of process parameters of mechanical type advanced machining processes using a simulated annealing algorithm. International Journal of Materials and Product Technology, 37(1/2): 83
Samanta, S., Chakraborty, S. (2011) Parametric optimization of some non-traditional machining processes using artificial bee colony algorithm. Engineering Applications of Artificial Intelligence, 24(6): 946-957
Saravanakumar, K., Dawood, S.A.K., Kumar, P.M.R. Optimization of SNS Turning Process Parameters on INSONEL 718 Using Genetic Algorithm. Engineering Science and Technology: An International Journal, 2(4): 532-537
Sharma, A.V.N.L., Kumar, S.P., Gopichand, A., Rao, M.R. (2012) Optimal machining conditions for turning of Al/S^ MMS using PSO and Regression analysis. International Journal of Engineering Research and Applications, 2(6): 497-500
Shivakoti, I., Diyaley, S., Kibria, G., Pradhan, B.B. (2012) Analysis of Material Removal Rate using Genetic Algorithm Approach. International Journal of Scientific & Engineering Research, 3(5): 1-6
Silberholz, J., Golden, B. (2010) Comparison of metaheuristics. u: Gendreau M., Potvin J.-V. [ur.] Handbook of metaheuristics, Heidelberg: Springer, 2nd edn
Talbi, E. (2009) Metaheuristics: From design to implementation. Wiley Publishing
Viana, A., Sousa, J.P., Matos, M.M. (2005) Constraint oriented neighborhoods: A new search strategy in metaheuristics. u: Ibakari T., Nonobe K., Yagiura M. [ur.] Metaheuristics: Progress as real problem solvers, Springer
Yang, X.S. (2011) Review of meta-heuristics and generalised evolutionary walk algorithm. International Journal of Bio-Inspired Computation, 3(2): 77
Yang, X.S., Deb, S. (2010) Engineering optimisation by cuckoo search. International Journal of Mathematical Modelling and Numerical Optimisation, 1(4): 330
Yildiz, A.R. (2013) Cuckoo search algorithm for the selection of optimal machining parameters in milling operations. International Journal of Advanced Manufacturing Technology, 64(1-4): 55-61
Yıldız, A.R. (2009) A novel particle swarm optimization approach for product design and manufacturing. International Journal of Advanced Manufacturing Technology, 40(5-6): 617-628
Yıldız, A.R. (2009) An effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industry. Journal of Materials Processing Technology, 209(6): 2773-2780
Yusup, N., Zain, A.M., Hashim, S.Z.M. (2012) Evolutionary techniques in optimizing machining parameters: Review and recent applications (2007-2011). Expert Systems with Applications, 39(10): 9909-9927
Zain, A.M., Haron, H., Sharif, S. (2010) Application of GA to optimize cutting conditions for minimizing surface roughness in end milling machining process. Expert Systems with Applications, 37(6): 4650-4659